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1 Introduction

A fundamental challenge in identifying models of supply and demand is that firms can adjust

markups in response to demand shocks. Even if marginal costs are constant, this source of price

endogeneity generates upward-sloping supply in settings with imperfect competition. Thus,

the empirical relationship between prices and quantities does not represent a demand curve,

but rather a mixture of demand and supply. Researchers typically address this challenge by

using supply-side instruments to estimate demand, and then using the supply model to recover

marginal costs and simulate counterfactuals (e.g., Berry et al., 1995; Nevo, 2001).

In this paper, we develop an alternative identification strategy that exploits covariance re-

strictions between demand-side and supply-side structural error terms. We first establish a func-

tion linking the price parameter and the covariance of unobservable cost and demand shocks

for a broad class of oligopoly models. We then show how this relationship can identify the price

parameter and pin down the slope of demand in estimation. A key distinction between our ap-

proach and the use of instrumental variables is that we interpret endogenous variation in prices

and quantities through the lens of the model, rather than relying on an additional (observed)

variable to isolate exogenous variation in price. The core intuition is that the supply side of the

model dictates how prices respond to demand shocks, shaping the relative variation of quanti-

ties and prices in the data. We explore the promise and limitations of the covariance restriction

approach to estimation, both theoretically and in the context of three empirical applications

that we draw from the literature.

In Section 2, we outline the data-generating process for our baseline model and provide for-

mal identification results. The model can accommodate standard empirical demand systems,

such as logit and random coefficients logit, among others. The supply-side assumptions nest dif-

ferent models of conduct for oligopolists with constant marginal costs, including differentiated-

products Bertrand competition and Cournot competition. In this setting, prices are endogenous

because they respond to a demand shock (the demand-side “structural error term”) that is

unobserved to the econometrician.

We prove that the price parameter solves a quadratic equation in which the coefficients are

functions of observables and the covariance between demand and cost shocks. With a restric-

tion on the covariance term, the price parameter is identified up to (at most) two points. Under

reasonable conditions, the price parameter is the more negative solution, and point identifica-

tion is obtained. The price parameter can be computed directly from an analytical solution,

or the covariance restriction can be recast as an orthogonality condition and estimation can

proceed with the method of moments. We show how the empirical variation in (transformed)

quantities and prices is informative about the price parameter. All else equal, more elastic

demand yields greater variation in quantities relative to variation in prices.1

1This is true even if the empirical relationship between prices and quantities is upward sloping. Our method will
still recover the correct downward-sloping demand curve.
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Point identification can thus be achieved with a fully-specified model and a covariance re-

striction on unobserved shocks. Whether the covariance restriction is credible depends on the

details of the economic environment. For example, in the presence of capacity constraints, a

positive demand shock can increase marginal costs, yielding an overall positive correlation. Us-

ing weaker assumptions, we show how our results can be used to achieve partial identification

and bound the price parameter. If the econometrician can sign the correlation between unob-

served demand and cost shocks, then one-sided bounds can be placed on the price parameter.

Furthermore, our results show when it is possible to rule out some values of the price parameter

without any assumption about this correlation.

In Section 3, we compare the assumptions under which the covariance restriction approach

obtains point identification to the corresponding assumptions of the instrumental variable ap-

proach. Both approaches employ restrictions on the correlation structure of unobservables. As

typically defined, valid instruments satisfy an exclusion condition and a relevance condition.

The exclusion restriction for instrumental variables is similar to the covariance restriction when

the econometrician uses cost variation as an instrument. However, the instrumental variable

approach requires the econometrician to observe exogenous variation in order to identify the

model (e.g., Wooldridge, 2010; Berry and Haile, 2014). The covariance restriction approach

avoids this requirement by imposing the stronger assumption that the residual unobserved

variation is uncorrelated. This assumption also precludes the need for an empirical relevance

condition; all of the observed variation in prices and quantities is used in estimation. By con-

trast, the instrumental variable approach can suffer from bias if the instrument and price are

weakly correlated.

After formalizing these distinctions, we compare our identification strategy to an approach

that uses “residual instruments” recovered under a covariance restriction (Hausman and Tay-

lor, 1983) and to the oft-used instruments of Hausman (1996). Finally, we use Monte Carlo

simulations to show that, when the necessary assumptions are met, a covariance restriction

outperforms instruments in finite samples, especially when instruments become weak.

In Section 4, we provide extensions to the baseline model. First, we consider a more general

class of covariance restrictions that might be employed in practice. For example, for the Haus-

man instruments—prices in related markets—to be valid, three economic assumptions about

the correlation structure between unobserved shocks must be satisfied. We discuss how one

could employ these assumptions directly in a method of moments estimator, rather than relying

on an instrumental variables implementation using observed prices.

We also discuss models in which costs are not constant in quantity. In such cases, the

response of prices to demand shocks is mediated by the slope of the cost curve. One approach to

resolve this issue is to explicitly model the (non-constant) marginal cost function. A covariance

restriction may then be credible, though identification requires additional moments for any

parameters that enter the non-constant portion of marginal costs. Alternatively, one could
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forgo the estimation of the marginal cost function and, instead, invoke the bounds approach.

We apply these methods in a series of empirical applications (Section 5). The three settings

that we have selected—ready-to-eat (RTE) cereals, cement, and airlines—differ in a variety

of ways that influence our implementation. With RTE cereals, marginal costs can plausibly

be modeled as constant, so we proceed with estimation under a covariance restriction, using

fixed effects to absorb potentially confounding variation. With cement, capacity constraints

imply that marginal costs may increase with quantities. We follow an approach developed in

the literature and model this effect explicitly, after which we view a covariance restriction as

credible. Finally, with airlines, we apply a bounds approach that uses weaker assumptions

about the relationship between demand and cost shocks, as the stronger assumptions used in

the two preceding applications may not be credible for that industry. In each case, we show

how covariance restrictions support inferences about the price parameter.

Together, these results show how covariance restrictions can help overcome a significant

obstacle for empirical research: the need to find valid instruments for price. In our three appli-

cations, we obtain parameter values that are consistent with instrumental variable estimates.

Outside of this paper, Döpper et al. (2023) show that covariance restrictions deliver estimates

comparable to those in the industrial organization literature (for cereal, yogurt, and beer) as

well as in the international trade literature (coffee). De los Santos et al. (2021) use covariance

restrictions in the context of e-books. Like other electronic goods, e-books can have substantial

fluctuations in demand over time that are unrelated to changes in marginal costs. These exam-

ples indicate that covariance restrictions can deliver reasonable estimates in different settings.

Empirical models of imperfect competition typically have other key parameters that charac-

terize heterogeneity of consumer preferences. To identify these parameters, researchers have

used micro-moments constructed from the observed behavior of individual consumers (e.g.,

Backus et al., 2021; Döpper et al., 2023) and “second choice” data from surveys about con-

sumers’ ordered preferences over products (e.g., Grieco et al., 2023). These strategies identify

the consumer heterogeneity parameters but do not resolve price endogeneity (Berry and Haile,

2020). Thus, the covariance restriction approach that we examine is a useful complement to

the use of detailed consumer data.2

To put our results in context, covariance restrictions were analyzed in early research on the

identification of linear systems of equations, including supply and demand models of perfect

competition (e.g., Koopmans, 1949; Koopmans et al., 1950).3 With perfect competition, the

supply curve is upward-sloping due to increasing costs of production. With upward-sloping

supply and downward-sloping demand, two separate restrictions are required for identification
2Alternatively, if instruments are constructed from the characteristics of competing products (e.g., Berry et al.,

1995; Gandhi and Houde, 2023), then the covariance restriction could be incorporated using the generalized
method of moments (GMM) as an additional identifying restriction.

3Many articles advanced this research agenda, which began at the Cowles Foundation, in subsequent decades
(e.g., Fisher, 1963, 1965; Wegge, 1965; Rothenberg, 1971; Hausman and Taylor, 1983; Hausman et al., 1987).
More recently, Matzkin (2016) examines covariance restrictions in semi-parametric models.
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(Hausman and Taylor, 1983). If, instead, price endogeneity arises due to the markup adjust-

ments that occur in models of imperfect competition, then (as we show) a single restriction is

sufficient for identification.

The strategy of using supply-side restrictions to reduce identification requirements has par-

allels in a handful of other articles. Leamer (1981) examines a linear model of perfect compe-

tition, and provides conditions under which the price parameters can be bounded using only

the endogenous variation in prices and quantities. Feenstra (1994) considers the case of mo-

nopolistic competition with constant markups, and a number of applications in the trade litera-

ture extend this constant-markup approach (e.g., Broda and Weinstein, 2006, 2010; Soderbery,

2015).4 Zoutman et al. (2018) return to perfect competition and show that, under a standard

assumption in models of taxation, both supply and demand can be estimated with exogenous

variation in a single tax rate. At a high level, our approach to estimation with covariance restric-

tions relates to Petterson et al. (2022), who show how to bound structural parameters based

on beliefs about the magnitudes of unobserved shocks. Our research builds on these articles by

developing results for imperfect competition with adjustable markups.5

2 Model and Identification

2.1 Data-Generating Process

The model examines supply and demand across markets. Markets can be conceptualized as

(for example) separate locations, time periods, or both. In each market t, there is a set Jt =

{0, 1, . . . , Jt} of products available for purchase. The market t = 1, . . . , T is defined by (Jt, χt),

where

χt = {xt,wt, ξt,ηt}

contains product and market characteristics. Among these, xt = [x1t; . . . ;xJtt] is a Jt × K

matrix of (non-price, exogeneous) product-market characteristics that are observable to the

econometrician, wt contains observable variables that arise in some specifications of the model,

and ξt = (ξ1t, . . . , ξJtt) and ηt = (η1t, . . . , ηJtt) are mean-zero Jt × 1 vectors of unobservable

product-level or market-level characteristics. We sometimes refer to the unobservable charac-

teristics as “structural error terms.” Let each ξjt, ηjt ∈ R and each xjt ∈ RK be a K × 1 (row)

vector. We assume that the first element in each xjt equals one, i.e., that the characteristics in

xt include a constant. The dimension of wt depends on the modeling specification. Without
4There are interesting historical antecedents to this trade literature. Leamer attributes an early version of his

results to Schultz (1928). The identification argument of Feenstra (1994) is also proposed in Leontief (1929).
Frisch (1933) provides an important econometric critique.

5Some applications in industrial organization identify demand-side parameters with the assistance of supply-side
assumptions (e.g., Thomadsen, 2005; Cho et al., 2018; Li et al., 2022). Among these, Thomadsen (2005) assumes
there are not unobserved demand shocks, and Cho et al. (2018) assume that there are no unobserved cost shocks;
both are special cases of the covariance restriction approach.
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loss of generality, let Jt = J = {0, 1, . . . , J}.

Prices and quantities are determined endogenously by market participants. Let pt = (p1t, . . . , pJt)

be a vector of prices and qt = (q1t, . . . , qJt) be a vector of quantities, with pjt, qjt ∈ R. Both

prices and quantities are observable to the econometrician. The parameters of the model are in

the set θ = {θ1, θ2}. Following Nevo (2001), we let θ1 include parameters that affect demand

and supply linearly in a manner that we specify below, whereas we use θ2 for additional param-

eters that enter with some specifications of the model. An example of the latter is the nesting

parameter that enters if demand is nested logit (e.g., Berry, 1994). Our main identification

results are for θ1. Covariance restrictions also can help pin down θ2 in some settings.

On the demand side, we assume that the quantity of each product is determined by qjt =

σ(j,t)(pt, χt;θ), where each σ(j,t) is a demand function. We also assume that, for every (j, t),

there exists a known function h(j,t)(qt,wt; θ2) that is increasing in the quantity of the product

(qjt). The function can be interpreted as providing transformed quantities as a function of wt

and θ2. We provide examples of h(j,t) later, as its form depends on the demand system. The

substantive restriction we place on demand is that h(j,t) is constructed such that the following

equality is satisfied everywhere:

h(j,t)(qt,wt; θ2) = αpjt + xjtβ + ξjt (1)

where α and β are parameters contained in θ1 and α < 0 (i.e., demand slopes down). Thus, we

assume that a known function can map quantities to an index that is linear in prices. Models

that satisfy these conditions are used regularly in the empirical industrial organization litera-

ture.6

Equation (1) embeds two important assumptions. First, that the unknowns θ1, ξt, and ηt

do not enter h(j,t) directly (but can enter indirectly through qt). Thus, h(j,t) can be constructed

given observables and knowledge of θ2. Second, that the right-hand side of equation (1) is lin-

ear. This restriction allows us to use linear regression results to construct an analytic expression

for α. Though separability of ξjt and pjt is important, it is not critical that the expression be

linear in prices, as we show in Appendix A.

On the supply side, we decompose prices into markups and marginal costs:

pjt = µjt +mcjt (2)

Consistent with equilibrium behavior in a broad class of oligopoly models, we assume that,

for each (j, t), there exists a known function λ(j,t)(qt,wt; θ2) such that the following equation

6See the discussion of logit demand in the paragraph following equation (3). Nested logit, random coefficients
logit, linear demand, and constant elasticity demand are nested within the general model or accommodated with
straightforward generalizations (Appendix A).
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holds:

µjt = − 1

α
λ(j,t)(qt,wt; θ2) (3)

The substantive restrictions imposed are the multiplicative separability of 1
α and that the un-

knowns θ1, ξt, and ηt do not enter λ(j,t) directly (but, as with demand, they can enter indirectly

through qt). Therefore, λ(j,t) can be constructed given observables and knowledge of θ2. In

our applications and in Appendix A, we show how to construct λ(j,t)(·) in a variety of specific

contexts.7

To fix ideas, consider the canonical model of logit demand with oligopoly price competition.

Quantities are given by qjt = sjtMt where sjt is the market share of the product and Mt

(contained in wt) is the size of market t. The left-hand side of equation (1) is constructed as

h(j,t)(qt,wt; θ2) ≡ ln(sjt)− ln(s0t), where s0t = 1−
∑

k∈J skt is the market share of the “outside

good.” With logit demand, there are no parameters in θ2, and market size is the only variable in

wt. The h(j,t)(qt,wt; θ2) function provides the utility that the average consumer would obtain

from the product. Likewise, on the supply side, λ(j,t)(qt,wt; θ2) provides the markups measured
in utils, while dividing by −α obtains markups measured in units of currency. With single-

product firms, the logit markup is given by µjt = − 1
α

1
1−sjt

and thus λ(j,t)(qt,wt; θ2) =
1

1−sjt
.

We initially maintain that marginal costs are constant and linear in the product characteris-

tics:

mcjt = xjtγ + ηjt (4)

where γ is contained in θ1. We later allow marginal costs to depend on quantities (Section 4.2).

Combining equations (2)-(4), the supply side of the model implies that the following equa-

tion is satisfied for each product j and market t:

λ(j,t)(qt,wt; θ2) = −αpjt + αxjtγ + αηjt (5)

This supply relationship characterizes how prices and quantities respond to shifts in demand

(holding fixed α and marginal costs) given the behavior of firms. It can, for example, capture

optimal price-setting behavior when individual firms have market power, and, unlike the sup-

ply curve for perfectly competitive firms, the supply relationship can lie above the marginal

cost curve when plotted in price-quantity space.8 Because the supply relationship expresses

(transformed) quantities as a linear function of prices and characteristics, it is the analog to the
7For example, with single-product Bertrand pricing and differentiable demand, we have the general expression

µjt = − 1
dqjt/dpjt

qjt = − 1
α

dh(j,t)

dqjt
qjt, yielding λ(j,t) = dh(j,t)

dqjt
qjt. Appendix A provides the relevant forms for specific

demand systems, addresses the construction of λ(j,t) with multi-product firms, and covers a generalized model of
oligopoly that nests both Bertrand competition in prices and Cournot competition in quantities.

8The difference between marginal costs and the supply relationship is the (perceived) inframarginal loss in
revenue for selling an additional unit of quantity. Bresnahan (1982) refers to the inverse of this equation, with price
on the left-hand side, as the “supply relation” and notes that it generalizes to different models of firm conduct. See
Appendix A.6 for a figure and additional discussion.
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demand relationship of equation (1).

Together, equations (1) and (5) provide the conditions that jointly determine prices and

quantities. The supply-side behavior captured by equation (5) does not necessarily have to cor-

respond to equilibrium behavior, but, when it does, these equations yield equilibrium outcomes.

The framework covers many of the empirical models of industrial organization (Appendix A).

Nonetheless, some models are excluded. For example, in models with constant elasticity de-

mand, one cannot construct h(j,t)(qt,wt; θ2) that satisfies equation (1). It is possible, however,

to find a function that satisfies a related restriction: that the right-hand side is linear in log

prices, and log prices are additively separable from the demand-side structural error term. We

discuss how to extend our results to this, and other cases, in Appendix A.

Equations (1) and (5) also illuminate potential strategies to identify θ1. If a characteristic

xk shifts marginal costs (γk ̸= 0) but is excluded from demand (βk = 0), then it is a valid

instrument and can be used to estimate equation (1). A variable not in x that is correlated

with η but not ξ could also be a valid instrument. Conversely, a variable that shifts demand but

is excluded from marginal costs can be a valid instrument in the estimation of equation (5).

Thus, both cost shifters and demand shifters can provide exogenous variation that identifies θ1.

Similarly, “markup shifters” that create variation in λ(j,t) or h(j,t) can be valid instruments for

either the supply side or the demand side.9 Another possibility, which we develop below, is to

place a covariance restriction between the structural error terms from both equations.

2.2 Identification with Covariance Restrictions

We now consider the identification of the model using a covariance restriction, focusing on the

linear parameters (α, β, γ) = θ1. We assume that the econometrician knows θ2. The identifi-

cation of θ2 has been considered in other research (e.g., Berry et al., 1995; Berry and Haile,

2020; Gandhi and Houde, 2023), and we return to the prospect that covariance restrictions

may identify θ2 in the context of the empirical applications.

Stacking objects across markets, the econometrician observes vectors of prices and quan-

tities (P and Q), a matrix of non-price characteristics (X), and (possibly) other observables

(W ). Using observables, the model, and θ2, the econometrician can evaluate the demand and

supply transformations h(j,t)(qt,wt; θ2) and λ(j,t)(qt,wt; θ2) for every (j, t) pair. We denote

these values hjt and λjt and treat them as observed. We use H to denote the stacked JT vector

for hjt.

The structural error terms can be decomposed as follows:

ξjt = ξj + ξt +∆ξjt (6)

ηjt = ηj + ηt +∆ηjt (7)

9These might include functions of other products’ characteristics (Berry et al., 1995; Gandhi and Nevo, 2021) or
competitive events such as mergers, entry, or exit (e.g., Miller and Weinberg, 2017).
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which incorporates product-specific persistent components (e.g., higher quality or higher cost),

market-specific components (greater demand in a year and/or region), and an orthogonal

mean-zero residual term. Define an augmented characteristics matrix, x̃t, as including the

K observed covariates and a full set of dummy variables for products (J − 1) and markets

(T − 1). Stacking across markets, we obtain X̃ with dimension JT × (K + J + T − 2).

We assume the augmented characteristics are exogenous, in the sense that E[∆ξjt|x̃t] =

E[∆ηjt|x̃t] = 0 for all j = 1, . . . , J , as is commonly maintained in the literature. We also assume

that E[v′
tvt] has full rank, where vt = [pt x̃t] is a J × (K + J + T − 1) matrix that combines

prices with the augmented characteristics. Two immediate implications of these assumptions

are that E[x̃′
tx̃t] has full rank and that β and γ are trivially identified given knowledge of α,

following the standard arguments for linear regression.

We now focus on the identification of the price parameter, α. We leverage a single moment

(a covariance restriction), which allows us to express our results using variance and covariance

terms among random variables. This notation is familiar from univariate regressions. We

obtain univariate regression analogs by taking a single variable (pjt), projecting it on the other

characteristics (x̃jt), and then considering a regression with the residualized values as the single

regressor. By the Frisch-Waugh-Lovell theorem (and exogeneity of x̃t), the resulting coefficient

estimate is identical to one obtained in the full multivariate regression. The residuals from a

regression of pjt on x̃jt are given by

P ∗ = P − X̃[X̃
′
X̃]−1X̃

′
P , (8)

and they provide the component of price that is orthogonal to characteristics and fixed effects.

Later in this paper, we residualize other variables in the same fashion. Throughout, we will use

the superscript ∗ to denote the residuals obtained from a regression of a variable on x̃jt.

An implication of the rank condition is that the augmented characteristics do not fully ex-

plain prices. Therefore, the unconditional variance of p∗jt is positive, i.e., V ar(p∗) > 0.10 Here,

and throughout the remainder of the paper, we omit jt subscripts when the variable occurs in

a covariance or variance expression or in the body of the text, e.g., p refers to pjt and x refers

to xjt. Note that p∗ is distinguished from the length JT vector P ∗ by the use of lower case and

a lack of bold font.

We now formalize our first identification result, which links the OLS estimate to the price

parameter. Following the discussion above, the probability limit (T → ∞) of the OLS estimate

of α obtained from a regression of h on p and x̃ is

αOLS ≡ Cov(p∗, h)

V ar(p∗)
= α+

Cov(p∗,∆ξ)

V ar(p∗)
. (9)

10This expression refers to the unconditional variance of p∗ (over products and markets). The unconditional vari-
ance is defined as V ar(p∗) ≡ E[(p∗)2]−E[p∗]2 where the expectations are taken over markets and products. The sec-
ond component is zero because we assume that x includes a constant. The empirical analog is 1

JT

∑T
t=1

∑J
j=1(p

∗
jt)

2.
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The corresponding OLS residuals are given by ∆ξOLS = H − V [V ′V ]−1V ′H.

We now construct a function that maps the price coefficient to a specific value for the co-

variance of the residual structural error terms:

Proposition 1. The probability limit of the OLS estimate can be written as a function of α, the
residuals from an OLS regression, prices and quantities, and a covariance term:

αOLS = α− 1

α+ Cov(p∗,λ)
V ar(p∗)

Cov
(
∆ξOLS , λ

)
V ar(p∗)

+ α
1

α+ Cov(p∗,λ)
V ar(p∗)

Cov(∆ξ,∆η)

V ar(p∗)
(10)

Therefore, α solves the following quadratic equation:

0 = α2

+

(
Cov (p∗, λ)

V ar(p∗)
− αOLS +

Cov(∆ξ,∆η)

V ar(p∗)

)
α (11)

+

(
−αOLSCov (p

∗, λ)

V ar(p∗)
−
Cov

(
∆ξOLS , λ

)
V ar(p∗)

)

All proofs are in Appendix D. The terms in equation (11) are well defined under our rank

condition and, aside from α and Cov(∆ξ,∆η), they have straightforward empirical analogs.

There are at most two solutions for α for any given value of Cov(∆ξ,∆η). Further, in

most empirical models, α is likely to be the lower root. The following result provides formal

conditions under which this is guaranteed:

Proposition 2. The parameter α is the lower root of equation (11) if and only if

− 1

α
Cov(∆ξ,∆η) ≤ Cov

(
p∗,∆η − 1

α
∆ξ

)
(12)

and, furthermore, α is the lower root of equation (11) if

0 ≤ αOLSCov (p∗, λ) + Cov
(
∆ξOLS , λ

)
(13)

In the first condition, it is helpful to think of − 1
α∆ξ as the residual demand-side structural

error term, scaled so that units are equivalent to those of marginal costs (and price). If

Cov(∆ξ,∆η) = 0, the condition holds as long as prices tend to increase with demand and

marginal costs, as occurs in most empirical models. For example, the condition holds when

demand is linear. Thus, α is likely the lower root of equation (11) in most applications.

The second condition is derived using properties of the quadratic formula. Because the

terms in equation (13) are constructed from data, the sufficient condition can be estimated
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and used to test (and possibly reject) the null hypothesis that multiple negative roots exist.

Henceforth, we assume that α is the lower root of equation (11).

The implication of this result—a one-to-one function mapping α to Cov(∆ξ,∆η)—is that

the price coefficient can be recovered with information about the correlation between residual

demand and cost shocks in models with imperfect competition. Conversely, moments that pin

down the price parameter also pin down the value of Cov(∆ξ,∆η).

2.3 Estimation with Covariance Restrictions

Estimation can proceed with the method of moments (a general approach) by recasting the

information about the covariance term as an orthogonality condition. One possibility is that

demand-side and supply-side structural error terms are uncorrelated: Cov(∆ξ,∆η) = 0. Equiv-

alently, this can be expressed as E[∆ξjt∆ηjt] = 0.

Under this assumption, the method of moments estimator uses the empirical analog of this

condition and attempts to minimize its contribution to the objective function. For a case with

one moment and one parameter, the method of moments estimate of α is given by

α̂CR = argmin
α̃<0

 1

T

1

J

∑
t

∑
j∈J

∆ξjt(α̃)∆ηjt(α̃)

2

, (14)

where ∆ξjt(α̃) and ∆ηjt(α̃) can be recovered from residualized (transformed) quantities and

prices, given the candidate parameter under consideration. Some care must be taken to ensure

convergence to the lower root. The generalized method of moments (GMM) may also be used

with additional moments or when estimating multiple parameters jointly, in which case the

sample moment may be weighted against other components of the GMM objective function

using the standard approach.

An implication of Proposition 1 is that this estimate is consistent for the price parameter,

i.e., α̂CR → α. This is notable because, in general, the inclusion of a moment in a method of

moments approach does not imply the consistent identification of an additional parameter.11

By contrast, a restriction on the covariance between the structural error terms provides identi-

fication of the price parameter a priori. Pushing the result further, one could use the analytical

expression in equation (11) to directly compute the coefficient estimate.12

11To highlight this, consider that Berry and Haile (2020) identify a class of moment conditions (micro-moments)
that can pin down consumer heterogeneity but provides no identifying information about the price parameter.

12The probability limit of the coefficient estimate is given by:

αCR =
1

2

αOLS − Cov (p∗, λ)

V ar(p∗)
−

√(
αOLS +

Cov (p∗, λ)

V ar(p∗)

)2

+ 4
Cov (∆ξOLS , λ)

V ar(p∗)

 , (15)

which obtains from an application of the quadratic formula.
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This method of moments approach is employed in our first application to estimate models

with random-coefficients logit demand and Bertrand pricing. In these models, β and γ can

be estimated with OLS regression once α̂CR is obtained. Döpper et al. (2023) also employ

the method of moments approach and illustrate how the additional parameters in θ2 can be

estimated with GMM using the nested fixed-point approach of Berry et al. (1995). For each

candidate θ̃2, the covariance restriction estimator is applied to obtain α̂CR(θ̃2). In the outer

loop, an estimate of θ2 is pinned down by micro-moments in the GMM objective function.

More generally, covariance restrictions can be applied in conjunction with instruments, and

additional moments allow for efficiency improvements and specification tests (e.g., Hausman,

1978; Hansen, 1982).

The empirical variation that identifies α is the relative variation of (transformed) quantities

and prices. When Cov(∆ξ,∆η) = 0, we obtain the following formal result:

Proposition 3. If Cov(∆ξ,∆η) = 0, then a first-order approximation to the probability limit of
the method of moments estimator is

αCR ≈ −

√
V ar(h∗)

V ar(p∗)
. (16)

Intuition can be gleaned from the simultaneous equations representation of the model,

using equations (1) and (5). Rearranging these to obtain inverse demand and inverse supply

relationships, we have:

pjt =
1

α
h(j,t)(qt,wt; θ2)−

1

α
xjtβ − 1

α
ξjt (Demand) (17a)

pjt = − 1

α
λ(j,t)(qt,wt; θ2) + xjtγ + ηjt (Supply) (17b)

By inspection, α determines the slope of both equations. A large α corresponds to a flatter

inverse demand schedule (i.e., price-sensitive consumers) and a flatter inverse supply relation-

ship (i.e., less market power). Uncorrelated shifts in such schedules tend to generate more

variation in quantity than in price. By contrast, a small α corresponds to steeper inverse de-

mand and supply relationships, such that uncorrelated shifts generate more variation in price

than quantity. Formally connecting these observations formally generates an approximation of

the lower root based on the ratio of variances. We illustrate this argument using a numerical

example in Appendix B.

2.4 Partial Identification: Bounds

We now show how our formal identification results can be used to construct bounds on the

price parameter, which may be useful for inference when a covariance restriction along the
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lines of Cov(∆ξ,∆η) = 0 is not plausible. We first consider bounds that utilize prior knowledge

of the sign of the correlation between ∆ξ and ∆η. Next, we show how the model and the data

together may bound the price coefficient without any additional information.

In the first case, we assume that the econometrician can sign the correlation between ∆ξ and

∆η. This situation might arise, for example, if factor prices are influenced by macroeconomic

conditions, such that there is a link between the unobserved demand-side and supply-side error

terms that is difficult to model explicitly. With a prior of the sign of Cov(∆ξ,∆η), bounds can be

placed on α. This is because there is a one-to-one mapping between the value of Cov(∆ξ,∆η)

and the lower root of equation (11):

Lemma 1. (Monotonicity) Under assumptions 1 and 2, a valid lower root of equation (11) (i.e.,
one that is negative) is decreasing in Cov(∆ξ,∆η). The range of the function is (0,−∞).

Thus, if idiosyncratic demand and costs are correlated, such as through capacity constraints

(Cov(∆ξ,∆η) ≥ 0), then one-sided bounds can be placed on α. More generally, let r(m)

be the lower root of the quadratic in equation (11), evaluated at Cov(∆ξ,∆η) = m. Then

Cov(∆ξ,∆η) ≥ m produces α ∈ (−∞, r(m)], and Cov(∆ξ,∆η) ≤ m produces α ∈ [r(m), 0).

The lower root, r(m), can be estimated with the method of moments.13

In the second case, it can be that some values of the price parameter are unable to rationalize

the data for any amount of correlation between ∆ξ and ∆η. These values can be ruled out.

Thus, the demand and supply assumptions alone may be informative about the plausible range

of α. Formally, this occurs when the quadratic from equation (11) does not have a lower root,

and thus no valid solution for α. To see why, represent the quadratic from equation (11) as

az2 + bz + c. By assumption, one root is α < 0. As a = 1, the quadratic is U-shaped. If c < 0,

then the existence of a negative root is guaranteed. However, if c > 0, then b must be positive

and sufficiently large for a negative root to exist. This places restrictions on Cov(∆ξ,∆η), which

is a component of b. From the monotonicity result (Lemma 1), we can use the excluded values

of Cov(∆ξ,∆η) to rule out values of α.

We now state the result formally:

Proposition 4. (Model-Based Bound) The model and data alone may bound Cov(∆ξ,∆η) from
below. The bound is given by:

Cov(∆ξ,∆η) > V ar(p∗)αOLS − Cov(p∗, λ) + 2V ar(p∗)

√(
−αOLS

Cov(p∗, λ)

V ar(p∗)
− Cov (∆ξOLS , λ)

V ar(p∗)

)

The bound exists if and only if the term inside the radical is non-negative. Further, through
equation (11), this lower bound on Cov(∆ξ,∆η) provides an upper bound on α.

13Nevo and Rosen (2012) develop conceptually similar bounds for estimation with imperfect instruments, defined
as instruments that are less correlated with the structural error term than with the endogenous regressor.
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A model-based upper bound for α is obtained by evaluating the lower root of equation (11)

at the model-based bound of Cov(∆ξ,∆η). In practice, priors over the the covariance of un-

observed shocks may be combined with model-based bounds to further restrict the identified

set.

2.5 Discussion

The covariance restriction approach to estimation requires the econometrician to assess whether

a covariance restriction between the structural error terms of the model is reasonable, given the

institutional details of the setting. It also requires the econometrician to specify the supply side

in order to estimate demand parameters. We discuss these two requirements in this section.

There are settings in which the econometrician may have reason to think that the pri-

mary components of costs are uncorrelated with the drivers of demand. For example, con-

sider demand for coffee beans in the United States. The cost of production primarily de-

pends on weather conditions and other agricultural concerns in Brazil, Colombia, Vietnam,

and Guatemala.14 Demand in the United States is largely unrelated to such factors, so it may

be reasonable to assume that demand shocks are orthogonal to marginal cost shocks.

On the other hand, there are environments where an assumption that demand and cost

shocks are uncorrelated would be problematic. First, when products vary in quality, we would

typically expect that products with higher (unobserved) quality are produced at higher costs. If

the econometrician only has the use of cross-sectional data, then fixed effects (ξj , ηj) cannot be

used to absorb the confounding variation, and the estimates would be biased. A second setting

that would generate correlation in demand and supply shocks is one in which marginal costs

vary with quantity produced. A third situation is simply when, even after addressing the above

issues, the econometrician anticipates that the residual shocks will be correlated.

In the above circumstances, an understanding that the structural error terms are likely cor-

related may also correspond to a belief that the correlation has a particular sign or, potentially,

falls within a specific range of values. In such cases, the econometrician can pair this under-

standing with our analytical results to place bounds on the structural parameters, as discussed

above. We explore this approach with an application in Section 5.3.

Further, in other cases, the correlation between demand and supply shocks can be accounted

for with fixed effects, or by explicitly modeling features that drive the correlation. In Section

3.1, we discuss an example with online retail where fixed effects control for the correlation

between demand and supply conditions. Similar arguments may be made for electronic goods

or consumer products sold in brick-and-mortar stores (Döpper et al., 2023; De los Santos et al.,

2021). Later in this paper, we provide an extension to show how a known marginal cost

function can be incorporated in the model (Section 4.2). In an application to the cement
14Potential supply shocks include severe frosts, high temperatures, below-average rainfall, excessive rainfall, plant

diseases, pests, and fertilizer costs. https://apps.fas.usda.gov/psdonline/circulars/coffee.pdf
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industry, we find that, after upward-sloping marginal costs are specified in the supply model,

the covariance restriction approach yields an estimate similar to that obtained when employing

the instruments used in the literature (Section 5.2).

We now discuss the requirement that the econometrician specify the supply side of the

model. In practice, empirical research in industrial organization often employs supply models

to calculate markups or conduct counterfactuals. For these purposes, imposing the relevant

supply model when estimating demand is not a substantive additional assumption about the

economic environment. However, there are cases in which demand-side estimates are of in-

terest independently, and the researcher may be hesitant to impose a supply model in these

cases. To explore misspecification bias, we perform Monte Carlo exercises with a logit demand

system and a misspecified supply model, which we detail in Appendix C. If we assume Bertrand

competition when the true model features joint profit maximization (i.e., perfect collusion),

then the average bias in the price parameter is less than four percent. The potential for bias ap-

pears to be mitigated by the fact that the covariance restriction approach also uses the demand

side of the model. These simulations indicate that, in some cases, the bias from supply-side

misspecification may not be large.

Finally, it is worthwhile to consider these two requirements in comparison to the require-

ments for instrumental variables. When estimating demand with instruments (e.g., cost shifters),

the econometrican does not need to fully specify a supply model. This reduces the chance that

supply-side assumptions materially affect the estimates. On the other hand, the instrumental

variable approach also requires an assessment about the covariance structure of unobservables,

similar to the covariance restriction approach. In the case of instruments, this assessment man-

ifests as the exclusion restriction. We explore the connection between covariance restrictions

and instruments in the next section.

3 Relationship to Instrumental Variables

The covariance restriction approach to estimation interprets observed endogenous variation in

quantities and prices through the lens of an economic model. This differs from the instrumental

variable approach, which seeks to isolate exogenous variation in prices. It also employs different

assumptions than those used to obtain “residual instruments” or Hausman instruments. We

provide formal distinctions in this section. We also use Monte Carlo simulations to illustrate

that a covariance restriction can outperform instruments in finite samples, especially when the

instrument become weak.

3.1 Motivating Example

We begin with an economic model in which a traditional instrumental variable approach and

the covariance restriction approach can yield consistent estimates. Consider a simplified setting
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in which a profit-maximizing monopolist faces linear demand in each of t = 1, . . . , T markets.

The demand schedule takes the form:

qjt = αpjt + ξj + ξt +∆ξjt (18)

and marginal costs take the form

mcjt = ηj + ηt +∆ηjt, (19)

where quantity demanded (qjt) and price (pjt) are observed (we retain the subscript j for

notational consistency). Thus, the model includes product- and market-specific shocks but no

observable characteristics other than price.

The key identification challenge for estimating α is that prices reflect unobserved demand

shocks. In our example, equilibrium prices are given by pjt = 1
2mcjt +

1
2|α| (ξj + ξt +∆ξjt).

Thus, prices are higher for higher quality products (Cov(pjt, ξj) > 0) and in high-demand

markets (Cov(pjt, ξt) > 0). In settings with sufficient observations, these correlations can be

controlled for with fixed effects for products and markets. However, the primary concern about

price endogeneity remains if Cov(pjt,∆ξjt) ̸= 0.

Either instrumental variables or a covariance restriction could be used to resolve price en-

dogeneity, after accounting for fixed effects. A standard instrumental variable approach is to

obtain auxiliary data about a component of costs that is orthogonal to ∆ξjt and to use it as an

instrument. For illustrative purposes, suppose that one could measure ∆ηjt directly. Then, ∆ηjt
would be a valid instrument for pjt in the demand equation as long as Cov(∆ξjt,∆ηjt) = 0.

Alternatively, our results show that the covariance restriction Cov(∆ξjt,∆ηjt) = 0 can be em-

ployed directly in estimation, without observing ∆ηjt. Both approaches can be motivated by

the same restriction on the covariance structure of unobservables.

To fix ideas, consider an online retailer that sells coffee tables made from two different

materials, e.g., wicker and solid wood. Consumers may prefer one product to another (ξj),

and overall demand for the retailer’s products may vary across markets (ξt). On the supply

side, products vary in procurement and distribution costs (ηj), and marginal costs vary across

markets due to differences in distribution networks and fuel costs (ηt). The online retailer sells

the products for different prices in each market in response to these features and local demand

and supply conditions, ∆ξjt and ∆ηjt. For the online retailer, residual product-market variation

in costs is due to the interaction of product characteristics with features of the local distribution

networks. Depending on the material, similarly-sized coffee tables can differ significantly in

weight, which affects the amount of fuel needed for shipping. Thus, the product-market cost

variation (∆ηjt) can be approximated by weightj × (fuel cost)t.

In this case, local market demand has no obvious link to idiosyncratic fluctuations in distri-

bution costs. Based on this, one could estimate demand by first obtaining data on product-level
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characteristics (weight) and market-level features (fuel costs), and then using the interaction

of the two to generate cost-shifter instruments in a standard instrumental variable approach.

When controlling for product quality and market-level demand, it would be necessary to con-

struct a measure with idiosyncratic across-market variation by product; otherwise, the instru-

ment would be fully absorbed by the fixed effects.15

Instead of collecting this auxiliary data to use as an instrument, one could impose the co-

variance restriction Cov(∆ξjt,∆ηjt) = 0 directly following Proposition 1. The identification

assumption relies on the same logic as the instrument—that idiosyncratic product-market dif-

ferences in costs are orthogonal to idiosyncratic product-market differences in preferences. Sim-

ilar reasoning is used by Döpper et al. (2023) when estimating demand for consumer products.

After using fixed effects to account for obvious linkages between demand and costs, the resid-

ual supply-side structural error features product-specific changes in input costs and distribution

costs, both of which have been exploited as instruments in recent research (e.g., Miller and

Weinberg, 2017; Backus et al., 2021). Thus, these examples—along with the applications in

Section 5—demonstrate how a similar justification for the validity of instrumental variables

may be used to motivate the covariance restriction approach.

3.2 Excluded Instruments

We now provide formal distinctions between the sets of assumptions that underlie each ap-

proach. An instrument is an observable variable that satisfies both an exclusion condition and

a relevance condition (e.g., Wooldridge, 2010). Using the model of equations (18) and (19),

these two conditions can be expressed as:

E[∆ξjtzjt] = 0 (20a)

E[p∗jtzjt] ̸= 0, (20b)

where, again, p∗ denotes the residuals from the linear projection of p on x̃. We focus on the

case of a single instrument, z. Without loss of generality, we express zjt as a component of the

supply-side structural error, ∆η = z+∆̃η, where ∆̃η is the remaining unobserved component.16

15Thus, it is often not sufficient to use a measure of ηj or ηt as an instrument. In practice, the econometrician
often observes only a portion of marginal costs, in which case the instrument zjt can be expressed as a component of
the full structural error, ∆ηjt = zjt + ∆̃ηjt. The unobserved component, ∆̃ηjt, may be interpreted as measurement
error—for example, if the interaction of fuel costs with weight is only a first-order approximation of actual shipping
costs. Isolating a component of costs is an advantage when Cov(∆ξjt, zjt) = 0, but Cov(∆ξjt, ∆̃ηjt) ̸= 0 as the
instrument still yields a consistent estimate, while the covariance restriction approach may be biased. This bias
becomes small when the orthogonal component z explains a greater share of idiosyncratic cost shocks. Thus, it can
be helpful to understand the components that contribute the most to the marginal cost residual, even if they are
unobserved in the data.

16The instrument must be linearly independent from x̃, otherwise equation (20b), which can alternatively be
expressed as E[p∗jtz∗jt], would be violated. For the model in equations (18) and (19), x̃ contains a constant and
dummy variables that capture market and product fixed effects. When the model incorporates product-market
varying characteristics (x), a variable xk is a candidate supply-side instrument when γk ̸= 0 and βk = 0. In this
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Condition (20a) is, in general, distinct from the covariance restriction E[∆ξjt∆ηjt] = 0. There

are settings in which one holds while other does not.

Under these assumptions, the probability limit of the two-stage least squares (2SLS) esti-

mate of α, given the instrument z, is:

αIV =
Cov(h∗, z)

Cov(p∗, z)
=
Cov(h∗, p̂∗)

V ar(p̂∗)
(21)

where p̂∗ is the residual from the linear projection of p̂ on x̃, and p̂ is defined as the predicted

values from the linear projection of p on z and x̃.17 The first expression shows that the 2SLS

estimate equals the ratio of the coefficient obtained in the reduced-form regression of h∗ on z

to the coefficient obtained in a first-stage regression of p∗ on z. The second expression provides

a reformulation that is useful for our purposes: the 2SLS estimate equals the coefficient from a

regression of h∗ on p̂∗, the (residualized) first-stage predicted values.

The instrumental variable approach has two empirical requirements beyond what is needed

for the covariance restriction approach. First, the excluded instrument must be observed in the

data, as the corresponding estimators are constructed as a function of z. Second, for αIV to be

well defined, the relevance condition (20b) must hold so that Cov(p∗, z) ̸= 0. That is, z must

add explanatory power for prices above and beyond the variables in x̃.18

Inspection of equation (21) provides a way to compare the relevance condition to the as-

sumptions of the covariance restriction approach. In the equation, the denominator of the

second expression has the term V ar(p̂∗), which is similar to the term V ar(p∗) in the denomi-

nator of equation (11). Each much be greater than zero for the corresponding estimator to be

well-defined.19 The condition that V ar(p̂∗) > 0 is stronger than the condition that V ar(p∗) > 0.

In fact, when the former holds, the latter is strictly implied.20 From the Frisch-Waugh-Lovell

theorem, we have V ar(p∗) ≥ V ar(p̂∗). Thus, the covariance restriction approach can proceed

under weaker assumptions about the conditional variance of prices.

Moreover, even if condition (20b) is satisfied in the limit, the instrumental variable esti-

mator can exhibit asymptotic bias in finite samples (e.g., Keane and Neal, 2022). This is an

important consideration in practice, and many papers have been devoted to addressing the

“weak instrument” problem when this condition is tenuously satisfied (e.g., Bound et al., 1995;

Staiger and Stock, 1997; Stock and Yogo, 2005). The covariance restriction approach can side-

case, we can simply redefine x̃ such that it does not include xk. This maps z to the above interpretation (as a
component of ∆η) and avoids the need for more cumbersome notation in this section. Note that omitting xk from x̃
and including it in ∆η does not affect the validity of a covariance restriction when z = xk satisfies condition (20a).

17In terms of data, P̂
∗
= P̂ − X̃[X̃

′
X̃]−1X̃

′
P̂ and P̂ = Z̃[Z̃

′
Z̃]−1Z̃

′
P for Z̃ = [Z X̃].

18An implication is that choosing the instrument zjt = ∆ηjt will not work when there is no residual variation
in costs, i.e., E[p∗jt∆ηjt] = 0. However, in this case, the covariance restriction approach can still obtain point
identification.

19As we discuss in Section 2.2, V ar(p∗) > 0 is an implication of E[v′
tvt] having full rank.

20To see this, note that, by way of counterexample, if x̃ perfectly predicts p such that V ar(p∗) = 0, there is no
residual variation for an instrument to explain.
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step this issue because all of the residual variation in p is used to construct the estimate. In

applications, V ar(p̂∗) may be small relative to V ar(p∗) if z is constructed from one of many

components of costs.

Thus far, we have framed a valid instrument as satisfying E[∆ξjtzjt] = 0. However, in the

context of the model, an alternative is to use an instrument that satisfies E[∆ηjtzjt] = 0. Such an

instrument could be taken from the demand side of the model or constructed based on markup

shifters, as in Berry et al. (1995). This approach uses the supply side of the model, specifically

the first-order conditions of equation (5), to estimate the price parameter. We highlight this

possibility because it shows how either demand-side variation or supply-side variation can be

used to pin down the price parameter, so long as the appropriate exclusion restriction can be

applied. The covariance restriction approach exploits both supply-side variation and demand-

side variation implicitly, using a single restriction.

3.3 Residual Instruments

We now compare our approach to the “residual instruments” approach, which uses a covariance

restriction to achieve identification of simultaneous equations. Wooldridge (2010, p. 258)

focuses on the case of two linear equations.21 To connect to this analysis, we rewrite demand

and supply from our motivating example to obtain the following:

qjt = α1pjt + ξj + ξt +∆ξjt (Demand) (22a)

qjt = −α2pjt + α2 (ηj + ηt +∆ηjt) (Supply) (22b)

where, again, the supply relationship comes directly from the monopolist’s first-order condi-

tion for profit maximization. Because we first consider the general simultaneous equations

approach, the price coefficients are allowed to vary across the equations.

The residual instruments approach to identification relies on the following moments for

some observable z:

E[zjt∆ηjt] = 0 (23a)

E[zjtp∗jt] ̸= 0 (23b)

E[∆ξjt∆ηjt] = 0. (23c)

The first two moments are analogous to instrumental variables conditions (20a) and (20b),

though, in this case, z is a demand-side instrument and excluded from the supply equation.

Here we assume that z is an observed component of the demand-side structural error, ∆ξ =

21The discussion in Wooldridge (2010) builds on a substantial literature on covariance restrictions in linear simul-
taneous equation models (e.g., Hausman and Taylor, 1983; Hausman et al., 1987). More recent research generalizes
these results (Matzkin, 2016).
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z + ∆̃ξ. The third moment corresponds to the covariance restriction that Cov(∆ξ,∆η) = 0.

These three moments identify the model.

Estimation is typically described as proceeding in two steps. In the first step, a standard

instrumental variables regression with z as the instrument is used to identify α2 and the supply

equation. In the second step, the demand equation (22a) is estimated using the residuals from

the first step, ∆̂η, as an instrument. The residuals meet the necessary exclusion restriction in the

second step due to the covariance restriction. Thus, in this framework, covariance restrictions

have been interpreted as providing excluded instruments.22 As the above demonstrates, in

addition to the covariance restriction, the residual instruments approach requires an additional

two conditions about the existence of a valid instrument. In practice, it must also be the case

that z and ∆̂η explain p to a substantial degree, otherwise each step could suffer from the weak

instruments problem.

By contrast, our approach to estimation with covariance restrictions recognizes a theoretical

connection between the slopes of demand and supply that is implied by the economic model:

α1 = α2 = α. In this case, α is point identified with only one restriction: Cov(∆ξ,∆η) = 0.

With this approach, there is no need for an excluded instrument (z).23 This provides a path

for identification under a different set of assumptions, while also avoiding the finite-sample

challenges of weak instruments.

3.4 Hausman Instruments

A number of articles in industrial organization have relied on prices in related markets as in-

struments in demand estimation (Gandhi and Nevo, 2021). Typically, “related markets” refer

to distinct geographic areas. In that setting, the price of a product in some market s can be a

valid instrument for the price of the same product in market t if marginal costs are correlated

across markets (e.g., due to shared production facilities) but demand is not. Such instruments

often are referred to as “Hausman instruments” due to their use in Hausman (1996).

Here, we assume that the econometrician employs product and market fixed effects.24 For

Hausman instruments to be valid, there must exist pairs of markets {(t, s)} such that:

E[∆ξjt∆ξjs] = 0 (24a)

E[∆ξjt∆ηjs] = 0 (24b)

E[∆ηjt∆ηjs] ̸= 0. (24c)

22This interpretation has been influential. For example, McFadden states in lecture notes (dated 1999) that,
“Even covariance matrix restrictions can be used in constructing instruments. For example, if you know that the
disturbance in an equation you are trying to estimate is uncorrelated with the disturbance in another equation,
then you can use a consistently estimated residual from the second equation as an instrument.” See https://eml.

berkeley.edu/~mcfadden/e240b_f01/ch6.pdf.
23However, as discussed earlier, either a demand-side or supply-side instrument would also identify the model.
24In practice, researchers sometimes use Hausman instruments that reflect variation across all markets, in which

case it is necessary to assume that ξj = 0.

19



Condition (24a) states that the demand-side error terms are uncorrelated across markets, con-

dition (24b) states that the demand-side error term of one market is uncorrelated with the

supply-side error term in another market, and condition (24c) states that supply-side error

terms are correlated across markets.

If these conditions are satisfied, then pjs is a valid (excluded) instrument for pjt in the de-

mand equation. Thus, analogous to the residual instruments approach in the previous section,

this approach leverages assumptions about the correlation structure of unobservables to gener-

ate excluded instruments. This approach can suffer from the weak instruments problem, as we

discuss in Section 3.2.

Similar to our approach, the Hausman instruments are justified by assumptions about the

correlational structure of demand and cost shocks. The set of assumptions are distinct: the

three above conditions could be met when E[∆ξjt∆ηjt] ̸= 0, or conditions (24a)–(24c) may

not be satisfied while E[∆ξjt∆ηjt] = 0. One advantage of the covariance restriction approach

is that only a single restriction is required. A second advantage is that it avoids the potential

weak instrument problem that Hausman instruments may be subject to in finite samples.

Note that the use of pjs as an excluded instrument does not necessarily exploit all of the

variation implied by conditions (24a)–(24c). As we discuss in Section 2.3, it is possible to use

such orthogonality conditions directly with the method of moments, rather than using them to

justify an observed variable (pjs) as an instrument. We explore generalizations of our approach

with these and other covariance restrictions in Section 4.1.

3.5 Finite Sample Comparison

We use Monte Carlo simulations to illustrate the finite sample performance of covariance re-

strictions relative to excluded instruments. For excluded instruments, we consider both tradi-

tional supply-side instruments and the demand-side instruments discussed in Section 3.2. In

both cases, we assume that the available instrument is fully efficient, in that it captures all of

the relevant exogenous variation—i.e., z = ∆η for a supply-side instrument and z = ∆ξ for

the demand-side instrument. That is, we allow the econometrician to fully observe cost shocks

when estimating demand or demand shocks when estimating the supply relationship.

For our simulations, we use the monopoly model of equations (18) and (19) for a single

product. We normalize the time fixed effects (ξt, ηt) to zero, and we set α = 1, ξj = 60, and

ηj = 20. We assume that ∆ξjt and ∆ηjt are mean-zero independent normal distributions with

standard deviations σξ and ση. We consider four specifications: (i) σξ = 1 and ση = 4, (ii)

σξ = 2 and ση = 3, (iii) σξ = 3 and ση = 2, and (iv) σξ = 4 and ση = 1. Moving from (i) to (iv),

demand-side variation increases and supply-side variation decreases.

As is well known, if both supply and demand variation are present, then equilibrium out-

comes provide a “cloud” of data points that need not correspond to the demand curve. To illus-

trate, we present one simulation of 500 observations from each specification in Figure 1, along
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Figure 1: Prices and Quantities in the Monopoly Model
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(ii)  More Cost Variation
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(iii)  More Demand Variation
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(iv)  Mostly Demand Variation

Notes: This figure displays equilibrium prices and quantities under four different
specifications for the distribution of unobserved shocks to demand and marginal
costs. The line in each figure indicates the slope obtained by OLS regression.

with the fit of an OLS regression of quantity on price. The expected values for the OLS estima-

tor in each scenario are −0.882, −0.385, 0.385, and 0.882. With greater demand-side variation,

the endogeneity bias is larger.25 Using the condition that Cov(∆ξ,∆η) = 0, we can correct

for endogeneity and construct a covariance restriction estimator for α as −
√
V ar(q)/V ar(p),

because, in this context, the approximation of equation (16) is exact. The corresponding es-

timates for each simulation in Figure 1 are −0.98, −1.00, −0.98, and −1.01, close to the true

parameter values.

We consider sample sizes of 25, 50, 100, and 500 observations. For each specification and

sample size, we randomly draw 10,000 datasets, and for each we estimate the model with a

covariance restriction, with a supply-side instrument, and with a demand-side instrument. For

the covariance restriction, we estimate α using −
√
V ar(q)/V ar(p), as above. For a supply-side

instrument, we estimate demand with 2SLS, using the cost shock ∆η as the instrument. For

the demand-side instrument, we estimate the supply relationship with 2SLS, using ∆ξ as the

instrument. All three approaches rely on the same orthogonality condition: E[∆ξjt∆ηjt] = 0.

25Inspection of Figure 1 further suggests there may be a connection between OLS bias and goodness-of-fit. Indeed,
starting with equation (16), a few lines of additional algebra obtain α ≈ −

∣∣αOLS
∣∣ /√R2 where R2 is from the

residual OLS regression of h∗ on p∗. The approximation is exact with linear demand. This reformulation fails if
R2 = 0, but numerical results indicate robustness for values of R2 that are approximately zero. We thank Peter Hull
for suggesting this connection.
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Table 1: Small-Sample Properties: Relative Variation in Demand and Supply Shocks

(a) Covariance Restrictions

(i) (ii) (iii) (iv)
Observations V ar(η) ≫ V ar(ξ) V ar(η) > V ar(ξ) V ar(η) < V ar(ξ) V ar(η) ≪ V ar(ξ)

25 -1.006 (0.100) -1.019 (0.198) -1.017 (0.199) -1.004 (0.102)
50 -1.003 (0.069) -1.010 (0.134) -1.008 (0.136) -1.002 (0.069)
100 -1.002 (0.047) -1.005 (0.094) -1.006 (0.095) -1.001 (0.049)
500 -1.000 (0.021) -1.001 (0.041) -1.001 (0.041) -1.001 (0.021)

(b) Supply Shifters (IV-1)

(i) (ii) (iii) (iv)
Observations V ar(η) ≫ V ar(ξ) V ar(η) > V ar(ξ) V ar(η) < V ar(ξ) V ar(η) ≪ V ar(ξ)

25 -1.007 (0.107) -1.044 (0.314) -1.273 (3.399) -0.820 (13.379)
50 -1.003 (0.074) -1.021 (0.202) -1.112 (0.623) -1.369 (10.661)
100 -1.002 (0.050) -1.010 (0.137) -1.057 (0.345) -1.509 (6.676)
500 -1.000 (0.022) -1.003 (0.060) -1.009 (0.138) -1.080 (0.444)

(c) Demand Shifters (IV-2)

(i) (ii) (iii) (iv)
Observations V ar(η) ≫ V ar(ξ) V ar(η) > V ar(ξ) V ar(η) < V ar(ξ) V ar(η) ≪ V ar(ξ)

25 -0.835 (12.357) -1.303 (3.667) -1.040 (0.315) -1.005 (0.109)
50 -1.299 (11.845) -1.116 (0.561) -1.018 (0.203) -1.003 (0.073)
100 -1.557 (6.517) -1.052 (0.343) -1.012 (0.139) -1.001 (0.052)
500 -1.071 (0.420) -1.011 (0.137) -1.002 (0.060) -1.001 (0.023)

Notes: Results are based on 10,000 simulations of data for each specification and number of observations.
The demand curve is qjt = αpjt + ξjt with α = −1 and ξjt = ξj +∆ξjt. Marginal costs are mcjt = ηjt where
ηjt = ηj + ∆ηjt. We consider a single product (j = 1) and vary the number of markets/observations from
25 to 500. IV-1 estimates are calculated using 2SLS with cost shocks (∆η) as an instrument in the demand
equation. Analogously, IV-2 estimates are calculated using 2SLS with demand shocks (∆ξ) as an instrument in
the supply relationship. We specify ∆ξ and ∆η as mean-zero independent normal distributions with standard
deviations σξ and ση. We consider four specifications: (i) σξ = 1 and ση = 4, (ii) σξ = 2 and ση = 3, (iii)
σξ = 3 and ση = 2, and (iv) σξ = 4 and ση = 1. Moving from (i) to (iv), demand-side variation increases and
supply-side variation decreases.

Table 1 provides the mean and (empirical) standard error of the point estimates for each

specification and approach.26 Panel (a) shows that the covariance restriction approach to esti-

mation yields estimates that are consistently close to the true value. Panel (b) shows that, with

supply-side instruments, small-sample bias becomes substantial with smaller datasets and less

variance in the cost shock. This is due to a weak instrument—for example, the mean first-stage

F -statistics in specification (iv) are 2.8, 4.2, 7.4, and 32.1 for markets with 25, 50, 100, and 500

observations, respectively. Panel (c) shows that, with demand-side instruments, small-sample

bias becomes substantial with smaller datasets and less variance in the demand shock, which is

also due to a weak instruments problem.

26To avoid outliers arising from the weak instrument problem, we bound the estimates of α on the range
[−100, 100]. For specifications that suffer from weak instruments, this biases the standard errors toward zero.
This affects specifications where the estimated standard error is greater than one, i.e., in 8 of 48 specifications.
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Thus, in settings where instruments perform poorly, a covariance restriction may still pro-

vide a precise estimate when the assumptions about the environment are correct. In our sim-

ulations, the covariance restriction has smaller standard deviations than either instrumental

variables strategy. Intuitively, even though exogenous variation is not observed, the covariance

restriction approach exploits how variation from demand and supply is reflected in equilibrium

prices and quantities.

4 Extensions

In this section, we provide two extensions. First, we discuss a broader class of potential co-

variance restrictions. Second, we consider the case of marginal cost functions. We use both

extensions in the applications of Section 5.

4.1 Generalized Covariance Restrictions

Thus far, our analysis has focused on covariance restrictions between own demand and cost

shocks. Our results demonstrate that this moment is expected to generate a consistent estimate

of the price parameter. We now consider different covariance restrictions that generalize the

approach. Though these other covariance restrictions do not provide a similar guarantee of

point identification, they may work well in certain settings. Additionally, they may pin down

other parameters of interest (e.g., those in θ2), in addition to the price parameter.

Consider the assumptions (24a)–(24c) that are required for the Hausman instruments.

Rather than using these assumptions to motivate the use of an instrument, the assumptions

could be employed directly in a method of moments estimator, where, as in equation (14),

the estimated residuals are generated from an econometric model for a candidate parameter.

This approach has an advantage over the Hausman instruments approach in that the estimator

would utilize all of the variation implied by the identifying moments.

Alternatively, it may be reasonable to assume that the variance of the demand shock does

not depend on the level of the cost shock, and vice versa, which generates the moments

Ejt[∆ξ
2
jt∆ηjt] and Ejt[∆ξjt∆η

2
jt]. Or it may be reasonable to assume that average shocks are

uncorrelated across groups of products, i.e., Egt[∆ξgt∆ηgt] = 0, where ∆ξgt and ∆ηgt are the

mean demand and cost shocks for products in group g.

Finally, it may be useful to consider cross-product covariance restrictions, i.e.,

Et[∆ξjt∆ηkt] = 0 ∀j ̸= k. (25)

These restrictions state that the demand shock for product j is uncorrelated with the cost shock

for product k. The expectation in equation (25) can be taken over t and k to obtain J restric-
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tions, or over markets (as written above) to obtain J × (J − 1) restrictions.27

We also note that our analytical results do not require a covariance value of zero. Propo-

sition 1 can be used to construct consistent estimates for any ς for which E[∆ξjt∆ηjt] = ς. In

certain situations, it may be possible to employ an estimate of the correlation in demand and

cost shocks to identify the price parameter. For example, Berry et al. (1995) report that this

correlation is 0.17. For a similar empirical setting, it may be reasonable to invoke Proposition 1

to obtain an estimate of α conditional on this value.

4.2 Marginal Cost Functions

If marginal cost depends on quantity, then an assumption that Cov(∆ξ,∆η) = 0 may not be

credible in the baseline model of Section 2. Here, we demonstrate how it is possible impose

additional structure to control for the relationship for quantity and marginal costs and obtain

identification. Consider the case in which marginal costs can be expressed as the following

function:

mcjt = xjtγ + g(qjt,wt; τ) + ηjt (26)

where g(·) is a function that depends on quantity, the data in wt, and the vector of parameters

τ that is contained in θ2. The supply relationship becomes:

λ(j,t)(qt,wt; θ2) = −αpjt + αxjtγ + αg(qjt,wt; τ) + αηjt (27)

In this augmented model, both markup adjustments and varying marginal costs contribute to

price endogeneity. If the econometrician omits g(·) from the model, then the residual cost shock

is ∆̃ηjt ≡ g(qjt,wt; τ) + ∆ηjt. Then, Cov(∆ξ,∆η) = 0 does not imply that Cov(∆ξ, ∆̃η) = 0,

and the approach of Section 2 may not produce consistent estimates.

However, tracing through the steps developed in Section 2.2, we can show that α is iden-

tified by the covariance restriction Cov(∆ξ,∆η) = 0 for any value of τ , given knowledge of

g(·). In that scenario, g(·) can be calculated from the data, given τ . Let gjt (or simply g) denote

the values of g(·) for each j and t, given τ . The OLS regression of h on p and x̃ yields a price

coefficient with the following probability limit:

αOLS = α− 1

α

Cov (∆ξ, λ)

V ar(p∗)
+
Cov(∆ξ, g)

V ar(p∗)
+
Cov(∆ξ,∆η)

V ar(p∗)
(28)

This equation can be reformulated such that the demand-side error term, ∆ξ, is replaced with

the probability limit of OLS residuals, ∆ξOLS , creating an analog to equation (10). Rearranging

terms and assuming Cov(∆ξ,∆η) = 0 then yields an analog to equation (11):

Corollary 1. If marginal costs take the semi-linear form of equation (26) and Cov(∆ξ,∆η) = 0,

27Similarly, the own-product restrictions may be assumed to hold separately by product, providing J restrictions.
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then α solves the following quadratic equation:

0 =

(
1− Cov(p∗, g)

V ar(p∗)

)
α2

+

(
Cov (p∗, λ)

V ar(p∗)
− αOLS + αOLSCov(p

∗, g)

V ar(p∗)
+
Cov(∆ξOLS , g)

V ar(p∗)

)
α

+

(
−αOLSCov (p

∗, λ)

V ar(p∗)
−
Cov

(
∆ξOLS , λ

)
V ar(p∗)

)

Given θ2, and thus h and g, there are at most two solutions for α, and the lower root can be

targeted in most applications. The method of moments can be used to jointly estimate α and

τ , using the covariance restriction to identify α and auxiliary moments to identify τ . The aux-

iliary moments can consist of excluded instruments or the generalized covariance restrictions

discussed above. We explore such a cost function approach to estimation in an application to

cement (Section 5.2).

5 Empirical Applications

We provide three empirical applications to demonstrate how covariance restrictions can inform

inference. The three settings—ready-to-eat (RTE) cereals, cement, and airlines—differ in a va-

riety of ways that influence our implementation. With RTE cereals, we proceed with estimation

under Cov(∆ξ,∆η) = 0, assuming constant marginal costs and using fixed effects to absorb

potentially confounding variation, as discussed in Section 3. With cement, capacity constraints

imply that marginal costs can increase with quantities. We follow an approach developed in the

literature and model this effect explicitly, after which Cov(∆ξ,∆η) = 0 becomes credible (as in

Section 4.2). Finally, with airlines, the relationship between demand shocks and prices can be

complicated; instead of modeling it directly, we apply a bounds approach (as in Section 2.4).

5.1 Ready-to-Eat (RTE) Cereals

We choose RTE cereals for our first application, because, with panel data and appropriate fixed

effects, a covariance assumption appears credible, for reasons that we explain below. Further-

more, it allows us to develop the covariance restriction approach to estimation in the context of

the random coefficients logit demand model (Berry et al., 1995). We use the pseudo-real cere-

als data of Nevo (2000) and compare estimates obtained with a covariance restriction to those

obtained with the provided instruments. There are 24 products, 47 cities, and 2 quarters.28

28See also Dubé et al. (2012), Knittel and Metaxoglou (2014), and Conlon and Gortmaker (2020). We focus
on the “restricted” specification of Conlon and Gortmaker (2020), which addresses a multicollinearity problem by
imposing that the parameter on Price× Income2 takes a value of zero. We refer readers to Nevo (2000) for details
on the data.
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Let the indirect utility that consumer i receives from product j in market t (a combination

of a quarter and a city) be given by

uijt = δjt(xjt, pjt, ξjt; θ1) + ϕijt(xjt, pjt, νi, Di; θ2) + ϵijt (29)

where δjt denotes a common component and ϕijt provides consumer-specific utility as a func-

tion of data and θ2. These components are specified as

δjt = αpjt + xjtβ + ξj +∆ξjt

ϕijt = [pjt xjt](ΠDi +Σνi)

such that consumer-specific utility is linear in the parameters [αi;βi] = [α;β] + ΠDi + Σνi.

Consumers can pick any one of the inside goods (j = 1, . . . , 24) or an outside good (j = 0)

that provides indirect utility of ui0t = ϵi0t. Mapping to the notation of Section 2, α and β are

contained in θ1, Π and Σ are in θ2, and the data xt and pt are included in wt.

Demand is expressed in terms of market shares.29 Let Nt denote the number of consumers

in a market, which we assume to be large. Under the assumption that unobserved shock ϵijt is

distributed i.i.d. type 1 extreme value, the market share for product j in market t (j ̸= 0) can

be written as

sjt = ςjt(δt,wt; θ2) ≡
1

Nt

Nt∑
i=1

exp(δjt + ϕijt(wt; θ2))

1 +
∑J

k=1 exp(δkt + ϕikt(wt; θ2))
(30)

Stacking across products, we obtain the vector-valued equation st = ςt(δt,wt; θ2). Because

each ςjt(·) is strictly increasing in δjt, this equation can be inverted to obtain δt(st,wt; θ2).

Each element δjt corresponds to hjt = h(j,t)(st,wt; θ2) in the notation of Section 2. Thus, in

implementation, the contraction mapping of Berry et al. (1995) can obtain the J × 1 vector ht

given st, wt, and θ2.

On the supply side of the model, marginal costs are given by

mcjmt = ηj +∆ηjt (31)

Prices are set by multi-product firms in Bertrand competition. Following the general results for

multi-product firms in Appendix A.5, equilibrium markups take the form specified in equation

(3), such that λ(j,t) can be expressed as a function of st, wt, and θ2. For additional details, see

Appendix A.2. Note that we follow Nevo (2000) and exclude market fixed effects from demand

and supply.

We use the covariance restriction Cov(∆ξjt,∆ηjt) = 0 in estimation. The supply-side struc-

29Following the discussion in Section 2.1, market shares can be converted into quantities using market size:
qjt = sjtMt. Thus, if the data have quantities rather then market shares, then Mt must be in wt.
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tural error term incorporates some of the cost-shifter instruments that have been used in the

recent literature, including time-varying, product-specific shipping costs (Miller and Weinberg,

2017) and the time-varying prices of product-specific ingredients (Backus et al., 2021). Given

the fixed effects, these cost shifters can be conceptualized as providing the variation that is

exploited in estimation. Furthermore, it may be reasonable to think that the marginal costs

of consumer products are roughly constant, as often maintained in the literature (Villas-Boas,

2007; Chevalier et al., 2003; Hendel and Nevo, 2013; Miller and Weinberg, 2017; Backus et al.,

2021).

The parameters for estimation include α and β (contained in θ1) and also Π and Σ (con-

tained in θ2). Identification of θ1 is obtained under the exogeneity of x̃ as conditions (1) and

(5) are satisfied. Additional identifying assumptions are needed for θ2. Some recent applica-

tions use micro-moments constructed from the observed behavior of individual consumers (e.g.,

Backus et al., 2021; Döpper et al., 2023), or survey data on the products that consumers view

to be their “second choice” (e.g., Grieco et al., 2023). Both of these strategies identify Π and

Σ but not the price parameter (Berry and Haile, 2020). This separability allows for a two-step

approach to estimation, in which the price parameter is estimated after the other parameters.

An alternative strategy is to use instruments constructed from competitor characteristics (e.g.,

Berry et al., 1995; Gandhi and Houde, 2023) to identify the additional parameters. As none

of these options are available to us given the data and specification, we pursue an alternative

approach based on a generalization of the covariance restriction assumption.

Specifically, we extend to all cross-product pairs the assumption that residual demand and

cost shocks are uncorrelated, such that Cov(∆ξjt,∆ηkt) = 0 for all j, k. The joint restrictions

are valid if the demand shock of each product is orthogonal to its own marginal cost shock and

to those of all other products. As there are 24 products in each market, the full covariance

matrix of demand and cost shocks provides a sufficient number of moments to estimate the 12

nonlinear parameters in the specification.

Table 2 summarizes the results of estimation based on instruments (panel (a)) and covari-

ance restrictions (panel (b)). In the application, Di consists of measures of log income, age,

and an indicator for whether the individual is a child; νi is drawn as a standard normal to

capture unobserved demographics; and x contains a constant, sugar content, and an indicator

for whether the cereal gets mushy with milk. Both identification strategies yield similar mean

own-price demand elasticities: −3.70 with instruments and −3.61 with covariance restrictions.

Overall, the different approaches produce similar patterns for the coefficients. Most of the point

estimates under covariance restrictions fall in the 95 percent confidence intervals implied by the

specification with instruments, including that of the mean price parameter. The standard errors

are noticeably smaller with covariance restrictions, which likely reflects that the covariance re-

striction approach to estimation more fully exploits the variation in the data. We conclude that

in this setting—where a covariance restriction appears credible—estimation with covariance
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Table 2: Point Estimates for Ready-to-Eat Cereal

(a) Available Instruments

Standard Interactions with Demographics

Variable Means Deviations Income Age Child

Price -32.019 1.803 4.187 – 11.755
(2.304) (0.920) (4.638) (5.198)

Constant – 0.120 3.101 1.198 –
(0.163) (1.105) (1.048)

Sugar – 0.004 -0.190 0.028 –
(0.012) (0.035) (0.032)

Mushy – 0.086 1.495 -1.539 –
(0.193) ( 0.648) (1.107)

(b) Covariance Restrictions

Standard Interactions with Demographics

Variable Means Deviations Income Age Child

Price -36.230 1.098 14.345 – 26.906
(1.122) (1.067) (1.677) (1.384)

Constant – 0.051 -0.156 1.072 –
(0.230) (0.286) (0.240)

Sugar – 0.003 -0.084 -0.004 –
(0.014) (0.018) (0.010)

Mushy – 0.130 0.301 -0.845 –
(0.162) (0.196) (0.103)

Notes: This table reports point estimates for the random-coefficients logit demand sys-
tem estimated using the Nevo (2000) dataset. Panel (a) employs the available instru-
ments. Panel (b) employs covariance restrictions.

restrictions and with instruments produce similar results.

5.2 The Cement Industry

Our second empirical application considers a setting in which marginal costs increase with

output. We build on the marginal cost specification from Section 4.2, in which the upward-

sloping part of the cost function can be modeled explicitly. To illustrate, we consider the setting

and data of Fowlie et al. (2016) [“FRR”], which examines market power in the cement industry.

The data are a balanced panel of 520 region-year observations for 20 regions over 1984-

2009, with the regions corresponding to selected urban areas in the United States. There are

an average of 4.65 cement firms located in each region-year.30

The model features Cournot competition among cement plants facing capacity constraints.
30See FRR for details on the data, which are available for download as part of the replication package.
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Let the market demand curve in region r and year t have a logit form:

h(rt)(Qrt,wrt; θ2) ≡ ln(Qrt)− ln(Mr −Qrt) = xrtβ + αprt + ξr +∆ξrt (32)

where Qrt =
∑

j∈J qjrt is total quantity produced in the region-year, Mr is the “market size” of

the region (and is contained in θ2), and the only characteristic in xrt is a constant.31 Further,

we allow marginal costs to vary with quantity according to

mcjrt = xrtγ + αprt + gjrt(qjrt,wrt; τ) + ∆ηjrt (33)

We follow FRR in the specification of the cost function and included fixed effects. In particular,

we assume that g is a “hockey stick” function, gjrt(qjrt,wrt; τ) ≡ 2τ1{qjrt/kjr > 0.9}(qjrt/kjr −
0.9), where kjr and qjrt/kjr are capacity and utilization, respectively. Marginal costs are con-

stant if utilization is less than 90%. Above this threshold, marginal costs increase linearly in

quantities at a rate determined by τ ≥ 0. Mapping to the notation of Section 2, τ is a scalar

element of θ2, and wrt includes kjr for each firm (in addition to Mr).

As in our baseline model, correlation between price and the demand-side structural error

term can arise due to both markup adjustments and the effect of demand on marginal costs.

However, due to the presence of gjrt(·) in the cost function, the latter channel exists even under

the covariance restriction Cov(∆ξrt,∆ηrt) = 0, where ∆ηrt =
1
J∆ηjrt. If gjrt(·) is known or can

be identified with additional moments, then the covariance restriction is sufficient to resolve

price endogeneity, as the model informs the markup adjustments. In estimation, we maintain

the covariance restriction at the market level.

Our demand and supply framework of equations (1) and (5) admits Cournot competition.

As only market-level price and cost measures are observed, one must use the mean firm-level

quantity qrt =
1
JQrt to obtain an expression for mean market-level markups and λ. In partic-

ular, when firms compete in quantities, we obtain λrt = 1
J
dh
dqQrt. Section 4.2 establishes the

necessary results to incorporate increasing marginal costs into our framework. In our imple-

mentation, we assume that ψ = 800—such that our gjrt(·) function is close to what is used in

FRR—and then use a method of moments estimator.

In the context of the cement industry, whether the covariance restriction is reasonable may

depend primarily on the relationship between construction activity (a shifter of unobserved

demand) and the prices of coal and electricity (determinants of unobserved marginal cost).

There is a theoretical basis to assume orthogonality: for example, if coal suppliers have limited

market power and roughly constant marginal costs, then coal prices should not respond much to

demand for cement. Indeed, this is the identification argument of FRR, as coal and electricity

prices are included in the set of excluded instruments. Consistent with this, the time-series
31We use logit demand rather than the constant elasticity demand of FRR to allow for adjustable markups. The

2SLS results are unaffected by this choice. In our implementation, we assume Mr = 2×maxt{Qrt}.
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of coal prices between 1980-2010 is not obviously correlated with macroeconomic conditions

(e.g., Miller et al., 2017).

We find that the covariance restriction approach yields a demand elasticity of -1.15, with

a standard error of 0.18.32 This is close to the 2SLS estimate of -1.07 (standard error 0.19)

that we obtain using the FRR instruments: coal prices, natural gas prices, electricity prices, and

wage rates. That the two approaches generate similar estimates may reflect that the identifying

assumptions themselves are similar, with the main difference being whether the cost shifters

are treated as observed (2SLS) or unobserved (covariance restrictions). By contrast, we obtain

a demand elasticity of -0.47 and a standard error of 0.15 using OLS. If we use the covariance

restriction approach without accounting for the presence of gjrt(·), we obtain a demand elastic-

ity of -0.90 and a standard error of 0.13, which is in between the OLS and 2SLS estimates and

demonstrates how accounting for marginal cost functions can matter for estimation results.

5.3 The Airline Industry

In our third empirical application, we examine demand for airline travel using the setting and

data of Aguirregabiria and Ho (2012) [“AH”]. The economics of the industry suggest that the

covariance restriction Cov(∆ξ,∆η) = 0 would not be credible. The reason is that airlines bear

an opportunity cost when they sell a seat, because that seat can no longer be sold at a higher

price to another passenger (Williams, 2022). Thus, all else equal, greater demand generates

higher marginal costs, inclusive of the opportunity cost. Absent a model of these opportunity

costs, it would be difficult to achieve point identification using the covariance restriction. In-

stead, we illustrate how to proceed in such cases by constructing bounds on the parameters of

interest.

The data feature 2,950 city-pairs in the United States observed over the four quarters of

2004. A market is a city-pair-quarter combination. Products are classified into the following

groups: nonstop flights, one-stop flights, and the outside good. On average, there are 7.98

products per market (not including the outside good) including 2.04 nonstop products.33

The nested logit demand system can be expressed as

h(j,mt)(qmt,wmt; θ2) ≡ ln sjmt− ln s0mt−σ ln sjmt|g = αpjmt+xjmtβ+ξa(j)+ξmt+∆ξjmt (34)

where sjmt is the market share of product j in market m in period t. The conditional market

share, sj|g = sj/
∑

k∈g sk, is the the choice probability of product j given that its “group” of

products, g, is selected. The outside good is indexed as j = 0. Consumer preferences vary
32We obtain bootstrapped standard errors based on 200 random samples constructed by drawing from the data

with replacement.
33We thank Victor Aguirregabiria for providing the data, which derive from the DB1B database maintained by the

Department of Transportation. Replication is not exact, because the sample differs somewhat from what is used in
the AH publication, and because we employ a different set of fixed effects in estimation.
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by airline (ξa(j)) and by route-quarter (ξmt), which we account for with fixed effects. Higher

values of σ increase within-group consumer substitution relative to across-group substitution.34

We impose three sets of bounds. First, we assume that product-level demand and cost shocks

are weakly positive, i.e., Cov(∆ξjmt,∆ηjmt) ≥ 0, based on the role of opportunity costs in the

industry. Second, if the correlation in product-level shocks is weakly positive, it is reasonable

to also assume that the correlation in group-level shocks is also weakly positive. That is, overall

demand for nonstop flights in a market may drive up the opportunity costs for nonstop flights.

Thus, building on Section 4.1, we apply the group-level inequality

Egmt[∆ξgmt∆ηgmt] ≥ 0, (35)

where ∆ξgmt = 1
|g|
∑

j∈g ∆ξjmt and ∆ηgmt = 1
|g|
∑

j∈g ∆ηjmt are the mean demand and cost

shocks within a group-market-period. Finally, we combine these bounds with the model-based

bounds developed in Section 2.4. We then construct an identified set by rejecting values of the

parameters (α, σ) that fail to generate the data or that deliver negative correlations between

costs and demand.

Figure 2 displays the rejected regions based on both the model and our assumptions on

unobserved shocks. The gray region corresponds to the parameter values rejected by the model-

based bounds; the model itself rejects some values of α if σ ≥ 0.62. As σ becomes larger,

a more negative α is required to rationalize the data. The dark red region corresponds to

parameter values that generate negative correlation between demand and supply shocks; this

region is rejected under the prior that Cov(∆ξjmt,∆ηjmt) ≥ 0. The dark blue region provides

the corresponding set for the prior Cov(∆ξgmt,∆ηgmt) ≥ 0 and is similarly rejected.

The three regions overlap, but no region is a subset of another. The non-rejected values

provide the identified set. We rule out values of σ less than 0.599 for any value of α, as these

lower values cannot generate positive correlation in both product-level and product-group-level

shocks. Thus, the bounds serve to reject the logit model (σ = 0) in favor of nested logit, even

with relatively limited information about the covariance of shocks.

Similarly, we obtain an upper bound on α of −0.067 across all values of σ. Combined, these

bounds indicate that the mean own-price elasticity is less than −0.537. For context, we plot the

OLS and the 2SLS estimates in Figure 2. The OLS estimate falls in a rejected region and can be

ruled out by the model alone. The 2SLS estimate falls within the identified set. This result is

not mechanical, as these point estimates are generated with non-nested assumptions.
34The covariates include an indicator for nonstop itineraries, the distance between the origin and destination

cities, and a measure of the airline’s “hub sizes” at the origin and destination cities. In estimation, we include airline
fixed effects and route×quarter fixed effects. Market size, which determines the market share of the outside good,
is equal to the total population in the origin and destination cities combined.
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Figure 2: Analysis of Bounds in the Airlines Industry
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Notes: This figure displays candidate parameter values for (σ, α). The gray region indicates
the set of parameters that cannot generate the observed data from the assumptions of the
model. The red region indicates the set of parameters that generate Cov(∆ξ,∆η) < 0, and
the blue region indicates parameters that generate Cov(∆ξ,∆η) < 0. The identified set is
obtained by rejecting values in the above regions under the assumption of (weakly) positive
correlation. For context, the OLS and the 2SLS estimates are plotted. The parameter σ can
only take values on [0, 1).

6 Conclusion

We have shown that restrictions on the covariance between unobserved demand and cost shocks

can resolve price endogeneity and allow for consistent estimation in models of imperfect com-

petition. Unlike the method of instrumental variables, the covariance restriction approach does

not require the econometrician to construct an observed variable that is correlated with an

exogenous portion of price. Instead, the endogenous variation in quantity and price is inter-

preted through the lens of the model to recover the structural parameters. Our three empirical

applications demonstrate how the covariance restriction approach can be used in different en-

vironments.

More broadly, our analysis shows how imposing a supply-side model provides feasible paths

to identification. Our formal results illustrate how demand-side instruments, in addition to co-

variance restrictions, can be sufficient to resolve price endogeneity. We also establish model-free

bounds, in which the model and the data jointly can reject certain values of the price parameter,

without the need for additional identifying assumptions. Conditional on meeting these bounds,

there is typically a unique mapping between the price coefficient and the covariance of demand

and costs shocks. In such settings, the covariance term can act as a free parameter to rationalize

different values of the price coefficient.
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The appeal of the covariance restriction approach relative to alternatives depends on data

availability and the institutional details of the industry under study. In cases where cost shifters

are observed, instrumental variables can recover demand parameters with only an informal

understanding of supply. By contrast, the covariance restriction approach leverages all of the

observed variation in prices and quantities, but it requires a formal supply-side model. Our

results provide paths to identification that may facilitate research in areas for which strong

supply-side instruments are unavailable.
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Appendix
For Online Publication

A Demand System Applications

The demand system of equation (1) is sufficiently flexible to nest monopolistic competition with
linear demand (e.g., as in the motivating example) and the discrete choice demand models that
support much of the empirical research in industrial organization. The demand assumption can
also be modified to allow for semi-linearity in a transformation of prices, f(pjt):

h(j,t)(qt,wt; θ2) = αf(pjt) + xjtβ + ξjt (A.1)

Under this modified assumption, it is possible to employ a method of moments approach to
estimate the structural parameters. In certain cases, it straightforward to extend our analytical
results.

For example, when f(pjt) = ln pjt, we can obtain our identification results under a modified
assumption about the structure of costs. The optimal price in such demand systems takes the
multiplicative form pjt = µjt ·mcjt, where µjt is a markup that reflects demand parameters and
(possibly) demand shocks. Assume that log marginal costs are linear in characteristics, such
that lnmcjt = xjtγ + ηjt. As in Section 2.2, consider the augmented exogenous characteristics
x̃ to include a full set of dummy variables for products and markets. The probability limit
(T → ∞) of the OLS estimate of α obtained from a regression of h on ln p and x̃ is given by:

αOLS = α+
Cov(lnµ,∆ξ)

V ar(ln p∗)
+
Cov(∆η,∆ξ)

V ar(ln p∗)
. (A.2)

This expression is analogous to equation (D.1). Therefore, the results developed in this paper
extend in a straightforward manner.

We provide some typical examples below for single-product firms with Bertrand competi-
tion. We then show how multi-product firms and other models of competition fit within the
framework of Section 2.

A.1 Nested Logit Demand

Following the exposition of Cardell (1997), let the firms be grouped into g = 0, 1, . . . , G mu-
tually exclusive and exhaustive sets, and denote the set of firms in group g as Jg. An outside
good, indexed by j = 0, is the only member of group 0. Then the left-hand-side of equation (1)
takes the form

h(j,t)(qt,wt; θ2) ≡ ln(sjt)− ln(s0t)− σ ln(sj|g,t)

where sj|g,t =
∑

j∈Jg

sjt∑
j∈Jg

sjt
is the market share of firm j within its group. Shares are

obtained by dividing quantities by the market size Mt. The market size and group identities
are contained in wt. The parameter σ ∈ [0, 1) is the only element of θ2, and it determines the
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extent to which consumers substitute disproportionately among firms within the same group.
If σ = 0 then the logit model obtains.

For single-product firms, the first-order condition for profit maximization pjt − mcjt =
− 1

dqjt/dpjt
qjt can be expressed as

µjt = − 1

dsjt/dpjt
sjt (A.3)

For equation (3) to hold, it must be that λ(j,t)(qt,wt; θ2) = −αµjt. We can solve for λ(j,t) in the
nested logit model by taking the derivatives of s with respect to p to obtain:

λ(j,t)(qt,wt; θ2) =
1

1
1−σ − sjt − σ

1−σ s̄j|g,t
. (A.4)

Thus, λ(j,t) can be expressed as a function of qt, and wt, and θ2. In our third application, we
use the nested logit model to estimate bounds on the structural parameters (Section 5.3).

A.2 Random Coefficients Logit Demand

In our application in Section 5.1, we develop the underlying indirect utility model of the random
coefficients logit model, following Berry (1994) and Nevo (2000, 2001). Here, we provide some
additional results using the notation from that section.

The probability with which consumer i selects product j (j ̸= 0) is

ρijt(δt,wt; θ2) ≡
exp(δjt + ϕijt(wt; θ2))

1 +
∑J

k=1 exp(δkt + ϕikt(wt; θ2))
(A.5)

which is obtained under the assumption that ϵ is distributed i.i.d. type 1 extreme value. Equa-
tion (30) aggregates choice probabilities across consumers. This calculation of expected mar-
ket shares converges to observed shares as Nt → ∞. In implementation, equation (30) is
often approximated by summing across a number of simulated consumers, with each simulated
consumer being characterized by a set of demographics {Di, νi}.

Consider a candidate parameter vector θ̃2 that includes Π and Σ. Given θ̃2, Berry et al.
(1995) prove that a contraction mapping recovers the J × 1 vector δt(st,wt, θ̃2) that such that
the choice probabilities implied by the model match the market shares observed in the data.
This “mean valuation” vector is equivalent to the vector ht in our notation. These vectors can
be stacked to obtain the full JT × 1 vector H in a single procedure.

The supply restriction from equation (3) is satisfied when (multi-product) firms compete
by setting prices, following our more general results for differentiated products Bertrand in
Appendix A.5. For example, for the special case with single-product firms and no random
coefficient on price (α = αi∀i), the Bertrand-Nash equilibrium yields

λ(j,t)(st,wt; θ2) =
sjt

1
Nt

∑
i ρijt(1− ρijt)

(A.6)

where the denominators integrate over the (product of) consumer-specific choice probabilities.
From an econometric standpoint, λ is free from the price parameter α because it depends
only on market shares and consumer-specific choice probabilities, ρijt(δt,wt; θ2). As discussed
above, δt can obtained as a function of shares.
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More complicated versions of λ(j,t) can be constructed numerically, however, this step is not
necessary as estimation can proceed by implementing the covariance restriction directly using
the method of moments. Confirming the restrictions on h and λ ensures identification of the
price coefficient and other linear parameters, conditional on θ̃2. The identification of θ2 is a
distinct issue that has received a great deal of attention from theoretical and applied research
(e.g., Waldfogel, 2003; Romeo, 2010; Berry and Haile, 2014; Gandhi and Houde, 2023; Miller
and Weinberg, 2017). We demonstrate how to estimate these parameters using additional
covariance restrictions in the application in Section 5.1.

A.3 Constant Elasticity Demand

With the modified demand assumption of equation (A.1), the constant elasticity of substitution
(CES) demand model of Dixit and Stiglitz (1977) can be incorporated:

h(j,t)(qt,wt; θ2) ≡ ln(qjt/qt) = β + α ln

(
pjt
Πt

)
+ ξjt

where qt is an observed demand shifter, Πt is a price index, and α provides the constant elas-
ticity of demand. In our notation, qt and Πt are contained in wt.

This model is often used in empirical research on international trade and firm productivity
(e.g., De Loecker, 2011; Doraszelski and Jaumandreeu, 2013). Due to the constant elasticity,
profit-maximization and uncorrelatedness imply Cov(p, ξ) = 0, and OLS produces unbiased
estimates of the demand parameters when marginal costs are constant.35 Indeed, this is an
excellent illustration of our basic argument: so long as the data-generating process is sufficiently
well understood, it is possible to characterize the bias of OLS estimates.

A.4 Other Demand Systems

The demand assumption in equation (1) accommodates many rich demand systems. Consider
the linear demand system, qjt = βj +

∑
k αjkpk+ ξjt, which sometimes appears in identification

proofs (e.g., Nevo, 1998) but is seldom applied empirically due to the large number of price
coefficients.

The system can be formulated such that h(j,t)(qt,wt; θ2) ≡ qjt−
∑

k ̸=j αjkpkt. In this demand
system, other prices (pkt) are elements of wt and the cross-product price coefficients αjk(k ̸= j)
are elements of θ2. In addition to the own-product uncorrelatedness restrictions that could
identify αjj , one could impose cross-product covariance restrictions to identify αjk (k ̸= j).
We discuss these cross-product covariance restrictions in the first application (Section 5.1). A
similar approach could be used with the almost ideal demand system of Deaton and Muellbauer
(1980).

A.5 Multi-Product Firms with Bertrand Competition

We illustrate how our framework more generally incorporates multi-product firms with the case
of Bertrand pricing. For this setting, we assume that the derivatives ∂qj/∂pk exist and that D,

35The international trade literature following Feenstra (1994) consider non-constant marginal costs, which re-
quires an additional restriction. See Section 5.2 for an extension of our methodology to non-constant marginal
costs.
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the J ×J matrix of derivatives ∂qj/∂pk ∀j, k ∈ J , is invertible. For matrix elements, let j index
rows and k index columns. The market subscript, t, is omitted to simplify notation.

We begin by establishing properties of demand using the restriction h(j)(q,w; θ2) = αpj +
xjβ + ξj from equation (1). Taking the derivative with respect to pj (holding fixed x, ξ, and
pkt ∀k ̸= j), we obtain ∑

k

∂h(j)

∂qk

∂qk
∂pj

= α (A.7)

Similarly, we obtain
∑

k
∂h(j)

∂qk

∂qk
∂pℓ

= 0 ∀ℓ ̸= j. These restrictions on demand admit the expression

HD = αI =⇒ D = αH−1 (A.8)

where H denotes the J × J matrix of derivatives ∂h(j)/∂qk ∀j, k ∈ J , D is defined as above,
and I is a J×J identity matrix. Because h(j) is a known function of q, w, and θ2, its derivatives
with respect to qk and thus each element of H can be calculated, and H−1 can be solved for.
We let A ≡ H−1 such that A denotes the matrix of demand derivatives up to the scalar α.

We now turn to the supply side of the model. Let Km denote the set of products owned
by multi-product firm m. When the firm sets prices on each of its products to maximize joint
profits, there are |Km| first-order conditions, which can be expressed as∑

k∈Km

∂qk
∂pj

(pk −mck) = −qj ∀j ∈ Km.

Let Dm denote the matrix of derivatives ∂qj/∂pk ∀j, k ∈ Km, and let qm and µm denote the
stacked vector of qj and µj = pj −mcj for j ∈ Km. Stacking the first-order conditions yields

Dmµm = −qm (A.9)

and, solving for markups, µm, we obtain

µm = − (Dm)−1 qm (A.10)

Equation (3) requires the construction of λ such that µm = − 1
αλ

m. In the case of multi-
product firms with Bertrand competition, it immediately follows that

λm = α (Dm)−1 qm (A.11)

Following the conditions on demand above, we have D = αA, and taking the corresponding
element-by-element minor, we have Dm = αAm. This yields

λm =α (αAm)−1 qm (A.12)

λm =(Am)−1 qm (A.13)

Because Am is a known function of q, w, and θ2, λm can be constructed of the same arguments.
Thus, we see that multi-product Bertrand fits in the class of models specified by equation (3).
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Figure A.1: Supply Relationship
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Notes: Figure plots an illustrative example of demand (D), marginal costs (MC), and the supply relationship
described in the paper (SR). The supply relationship can be interpreted as the opportunity cost to the firm of
selling an additional unit. The opportunity cost is the sum of the marginal cost and the inframarginal losses of
lowering price. The equilibrium price (P ∗) is determined by the intersection of D and SR.

A.6 Alternative Models of Competition

Our restriction on additive markups from equation (3) applies to a broad set of competitive
assumptions. Consider, for example, Nash competition among profit-maximizing firms that
have a single choice variable, a, and constant marginal costs. The individual firm’s objective
function is:

max
aj |ai,i ̸=j

(pj(a)−mcj)qj(a).

This generalized model of Nash competition nests Bertrand (a = p) and Cournot (a = q). The
first-order condition, holding fixed the actions of the other firms, is given by:

pj(a) = mcj −
pj

′(a)

qj ′(a)
qj(a).

In equilibrium, we obtain the structural decomposition p = mc + µ, where µ incorporates the
structure of demand and its parameters. This decomposition provides a restriction on how
prices move with demand shocks, aiding identification. Using restrictions about demand, such
as those imposed by equation (1), one can construct the appropriate form of λ(j,t)(·) and solve
for the price coefficient. Related first-order conditions can be obtained in other contexts, such
as consistent conjectures.

Bresnahan (1982) refers to the above equation as the “supply relation,” and notes that
it generalizes to many different forms of conduct. Figure A.1 plots the supply relationship
along with the demand curve for an illustrative setting. The supply relationship lies above the
marginal cost curve, and the difference is given by the inframarginal loss in revenue for selling
an additional unit (i.e., the gap between price and marginal revenue). As the inframarginal loss
has an opportunity cost interpretation, the supply relation can be conceptualized as the sum of
the marginal cost curve and the firm’s opportunity cost curve, with the latter incorporating any
market power that the firm has. Equilibrium price is determined by the intersection of demand
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Figure B.1: Relative Variation in Prices and Quantities with Different Price Parameters
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Notes: This figure displays equilibrium prices and quantities with four different values of the price
parameter. The supports of ∆ξ and ∆η are selected so that the supply-side and demand-side variation
is balanced and that the equilibrium price-quantity pairs form a cloud with no apparent slope. The
line in each figure indicates the slope obtained by OLS regression.

and the supply relationship. This is equivalent to the equilibrium price that obtains if the firm
sets price to equate marginal revenue and marginal cost.

B Empirical Variation in Prices and Quantities

In Section 2.3, we state that the empirical variation that identifies the price parameter (α)
under a covariance restriction relates to the relative variation in (transformed) quantities and
prices. In this appendix, we provide a numerical example for illustrative purposes using the
monopoly model of equations (18) and (19).

We assume that demand and marginal cost are given by

qjt = 60 + αpjt +∆ξjt and mcjt = 20 +∆ηjt

We consider four values of α: -0.2, -0.5, -1.0, and -1.5. As the slope of the inverse demand
relationship is 1/α and that of the inverse supply relationship is −1/α, the more negative
values for α generate flatter inverse demand/supply relationships. We let ∆η ∼ 2.5 × N(0, 1)
and let ∆ξ ∼ 2.5

−α × N(0, 1) with α affecting the support of ∆ξ so that both variables have
the same support if measured in the same units. We then take 500 draws on these demand
and cost shocks for each of the four price parameters, and compute the equilibrium prices and
quantities.

Figure B.1 shows the results. The four panels correspond to the four values of α. The panels

44



have comparable scales (16 units by 16 units) and are re-centered along the x and y axes. In
each, the equilibrium price-quantity pairs form a cloud with no apparent slope. The reason is
that supports of ∆ξ and ∆η are selected so that the supply-side and demand-side variation is
balanced. (Figure 1 illustrates how the clouds would slope down if the supply shocks dominate,
and up if the demand shocks dominate.) The four panels in Figure B.1 illustrate that a more
negative value of α leads to greater variation in quantities relative to variation in prices. The
reason is that the inverse demand and supply relationships are flatter, and uncorrelated shifts
in flatter inverse supply and demand relationships produce more variation in quantities, all else
equal. Intuitively then, it should be possible to compare the relative variance of quantity and
price to learn about the price coefficient. Proposition 3 formalizes this result.

For the monopoly model that we use for this numerical example—which features linear
demand and constant marginal cost—the approximation provided in Proposition 3 is exact and
simplifies to αCR = −

√
V ar(q)/

√
V ar(p). Calculating the implied estimate for each scatter

plot, we obtain −0.19, −0.50, −0.98, and −1.54, which are close to respective values of the
parameters used to generate the data.

C Supply-Side Misspecification

To illustrate how supply-side misspecification can affect the performance of the estimators, we
simulate duopoly markets in which the standard assumption of Bertrand price competition may
not match the data-generating process.36 We assume the demand system is logit, providing
consumers with a differentiated discrete choice, and we allow them to select an outside option
in addition to a product from each firm. The quantity demanded of firm j in market t is

qjt =
exp(2− pjt +∆ξjt)

1 +
∑

k=j,i exp(2− pkt +∆ξkt)

On the supply side, marginal costs are ckt = ∆ηkt (k = j, i). Firm j sets price to maximize
πj + κπi, and likewise for firm i, where κ ∈ [0, 1] is a conduct parameter (e.g., Miller and
Weinberg, 2017). The first-order conditions take the form[

pj
pi

]
=

[
cj
ci

]
−

[(
1 κ
κ 1

)
◦
(
∂q

∂p

)T
]−1 [

qj
qi

]

where ∂q
∂p is a matrix of demand derivatives and ◦ denotes element-by-element multiplication.

The model nests Bertrand competition (κ = 0) and joint price-setting behavior (κ = 1), as well
as capturing (non-micro-founded) intermediate cases.

We generate data with different conduct parameters: κ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}. For each
specification, we simulate datasets with 400 observations (200 markets × two firms), and es-
timate the model under the (erroneous) assumption of Bertrand price competition (κ = 0),
thus generating supply-side misspecification. We then estimate the model using the covariance
restriction approach assuming Cov(∆ξ,∆η) = 0, using ∆η as an (observed) excluded instru-
ment for demand, and using ∆ξ as an (observed) excluded instrument for supply. Across all

36Another form of misspecification could arise if prices or quantities are measured with error, in which case the
demand and cost residuals might be correlated even if the underlying shocks are uncorrelated.
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Table C.1: Small-Sample Properties: Supply-Side Misspecification

(1) (2) (3) (4) (5) (6)
Estimation Method κ = 0.0 κ = 0.2 κ = 0.4 κ = 0.6 κ = 0.8 κ = 1.0

Covariance Restrictions -1.001 -1.002 -1.000 -1.003 -1.016 -1.038
(0.050) (0.052) (0.053) (0.054) (0.053) (0.051)

IV-1: Supply Shifters -1.002 -1.000 -1.001 -1.001 -1.001 -1.002
(0.076) (0.077) (0.077) (0.076) (0.073) (0.071)

IV-2: Demand Shifters -1.015 -1.017 -1.012 -1.025 -1.082 -1.220
(0.153) (0.155) (0.159) (0.178) (0.213) (0.298)

IV-1: First-stage F-statistic 1079.9 1335.3 1424.9 1277.8 1027.1 801.9
IV-2: First-stage F-statistic 99.0 108.4 111.4 100.8 77.8 50.8

Notes: Results are based on 10,000 simulations of 200 duopoly markets for each specification. The
demand curve is hjt = 2− pjt +∆ξjt, so that α = −1, and marginal costs are cjt = ∆ηjt. Demand is
logit: h(qjt) = ln(qjt)−ln(q0t), where q0t is consumption of the outside good. IV-1 estimates are calcu-
lated using two-stage least squares with marginal costs (∆η) as an instrument in the demand equation.
Analogously, IV-2 estimates are calculated using two-stage least squares with demand shocks (∆ξ) as
an instrument in the supply relationship. Across all specifications, ∆ξ ∼ U(0, 0.5) and ∆η ∼ U(0, 0.5).
The data-generating process varies in the nature of competition across specifications, indexed by the
conduct parameter κ. The coefficients are estimated under the (misspecified) assumption of Bertrand
price competition (κ = 0).

specifications, ∆ξ ∼ U(0, 0.5) and ∆η ∼ U(0, 0.5).37

Table C.1 displays the results. As expected, supply-side misspecification can introduce bias
into the covariance restriction approach. The bias does not appear to be meaningful for modest
values of κ (i.e., 0.6 or less). When the true nature of conduct is κ = 1 (joint price setting),
but we assume Bertrand price competition, the bias is −3.8 percent. Likewise, the demand-side
instruments (IV-2), which invoke the formal assumption about conduct in estimation, perform
worse when the true κ is farther from the assumed value. The demand-side instruments perform
poorly when the true conduct is κ = 1, with a mean bias of over 20 percent. By contrast, supply-
side instruments do not use a formal assumption about conduct in estimation and provide
consistent estimates across the specifications (IV-1). Consistent with the earlier simulations,
the three-stage estimator outperforms IV-1 when conduct is correctly specified (κ = 0).

These results illustrate a key trade-off to the econometrician: if the supply-side assump-
tions are to be maintained, then covariance restrictions can offer better precision relative to
instrument-based approaches. However, supply-side instruments are robust to misspecification
of firm conduct, whereas covariance restrictions are not.

We note that the covariance restriction approach, which uses both demand-side and supply-
side variation, is not as susceptible to misspecification bias as demand-side instruments in our
simulations. The estimator appears to place greater weight on the source of variation with more
power. In specification (6), the mean coefficient of −1.038 is much closer to the supply-shifter
mean of −1.002 than the demand-shifter mean of −1.220. Indeed, it is approximately equal to
the IV-1 and IV-2 estimates weighted by the square root of the respective F -statistics. By placing
greater weight on supply-side shocks as the demand-side instruments degrade, the covariance
restriction approach appears to partially mitigate the bias from model misspecification.

37We note that these are not mean zero, but it does not matter in this case. It is simply a normalization.

46



D Proofs

D.1 A Consistent and Unbiased Quasi-Estimator of ∆ξ

Our proofs make use of the following lemma, which identifies a consistent and unbiased quasi-
estimator for the unobserved term in a linear regression when one of the covariates is endoge-
nous. We refer to it as a quasi-estimator because it depends on unobservables and cannot be
constructed from the data. It turns out to be a useful input in our proofs. Though demonstrated
in the context of semi-linear demand, the proof also applies for any endogenous covariate,
including when (transformed) quantity depends on a known transformation of price, as no
supply-side assumptions are required. For example, we may replace p with ln p everywhere and
obtain the same results.

For convenience, in this section, we omit the market-period subscripts jt on scalar variables
such as p, h, and ξ and the K × 1 (row) vector x.

Lemma D.1. A consistent and unbiased quasi-estimator of ∆ξ is given by ∆̂ξ1 = ∆̂ξ
OLS

+(
α̂OLS − α

)
p∗

For some intuition, note that we can construct both the true demand shock and OLS resid-
uals (at the probability limit) as:

∆ξ = h− αp− xβ

∆ξOLS = h− αOLSp− xβOLS

where this holds even in small samples. Recall that E[∆ξjt] = 0. The true demand shock is
given by ∆ξ0 = ∆ξOLS + (αOLS − α)p+ x(βOLS − β).

We desire to show that the quasi-estimator of the demand shock, ∆̂ξ1 = ∆̂ξOLS+
(
α̂OLS − α

)
p∗,

is consistent and unbiased. This eliminates the need to estimate the true β parameters. It suf-
fices to show that (α̂OLS−α)p∗ = (α̂OLS−α)p+x(β̂OLS−β)+Υ, where Υ is such that E[Υ = 0]
and Υ → 0 as T gets large. It is straightforward to show this using the projection matrices for
p and x.38

D.2 Proof of Proposition 1 (Set Identification)

From equation (9), we have α̂OLS p−→ α + Cov(p∗,∆ξ)
V ar(p∗) . The general form for a firm’s first-order

condition is p = mc + µ, where mc is the marginal cost and µ is the markup. We can write
p = p∗ + p̂, where p̂ is the projection of p on the exogenous variables x̃ that include product
and market fixed effects. If we substitute the first-order condition p∗ = mc+µ− p̂ into the bias
term from the OLS regression, we obtain

αOLS − α =
Cov(p∗,∆ξ)

V ar(p∗)
=
Cov(∆ξ,mc+ µ− p̂)

V ar(p∗)

=
Cov(∆ξ,∆η)

V ar(p∗)
+
Cov(∆ξ, µ)

V ar(p∗)
(D.1)

38Please contact the authors if interested in the full proof.
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where the second line follows from the exogeneity assumption that E[∆ξ|x̃] = 0 and that, by
assumption, mc = xγ + η. The exogeneity assumption implies that ∆ξ is orthogonal to the
product-specific and time-specific terms in mc, as these are included in x̃ as fixed effects.

From Lemma D.1, we can construct a consistent estimate of the unobserved demand shock
as ∆ξ = ∆ξOLS +

(
αOLS − α

)
p∗. We substitute this expression into Cov(∆ξ,µ)

V ar(p∗) , along with the
above expression for

(
αOLS − α

)
to obtain

Cov (∆ξ, µ)

V ar(p∗)
=
Cov

(
∆ξOLS , µ

)
V ar(p∗)

+

(
Cov(∆ξ,∆η)

V ar(p∗)
+
Cov (∆ξ, µ)

V ar(p∗)

)
Cov(p∗, µ)

V ar(p∗)

Cov (∆ξ, µ)

V ar(p∗)

(
1− Cov(p∗, µ)

V ar(p∗)

)
=
Cov

(
∆ξOLS , µ

)
V ar(p∗)

+
Cov(∆ξ,∆η)

V ar(p∗)

Cov(p∗, µ)

V ar(p∗)

Cov (∆ξ, µ)

V ar(p∗)
=

1

1− Cov(p∗,µ)
V ar(p∗)

Cov
(
∆ξOLS , µ

)
V ar(p∗)

+

1

1− Cov(p∗,µ)
V ar(p∗)

Cov(∆ξ,∆η)

V ar(p∗)

Cov(p∗, µ)

V ar(p∗)

Plugging this into equation (D.1) yields

αOLS = α+
Cov(∆ξ,∆η)

V ar(p∗)
+

1

1− Cov(p∗,µ)
V ar(p∗)

Cov
(
∆ξOLS , µ

)
V ar(p∗)

+

Cov(p∗,µ)
V ar(p∗)

1− Cov(p∗,µ)
V ar(p∗)

Cov(∆ξ,∆η)

V ar(p∗)

αOLS = α+
1

1− Cov(p∗,µ)
V ar(p∗)

Cov
(
∆ξOLS , µ

)
V ar(p∗)

+
1

1− Cov(p∗,µ)
V ar(p∗)

Cov(∆ξ,∆η)

V ar(p∗)

Thus, we obtain an expression for the plim of the OLS estimator in terms of the OLS residuals,
the residualized prices, the markup, and the correlation between unobserved demand and cost
shocks.

If the markup can be parameterized as a function of observable data, and if the correlation
in unobserved shocks can be calibrated, we have a method to estimate α from the OLS regres-
sion. Under our supply and demand assumptions, µ = − 1

αλ, and plugging in obtains the first
equation of the proposition:

αOLS = α− 1

α+ Cov(p∗,λ)
V ar(p∗)

Cov
(
∆ξOLS , λ

)
V ar(p∗)

+ α
1

α+ Cov(p∗,λ)
V ar(p∗)

Cov(∆ξ,∆η)

V ar(p∗)
.

The second equation in the proposition is obtained by rearranging terms. QED.

D.3 Proof of Proposition 2 (Point Identification)

Part (1). We first prove the sufficient condition, i.e., that under assumptions 1 and 2, α is the
lower root of equation (11) if the following condition holds:

0 ≤ αOLSCov(p
∗, λ)

V ar(p∗)
+
Cov

(
∆ξOLS , λ

)
V ar(p∗)

(D.2)
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Consider a generic quadratic, ax2+ bx+ c. The roots of the quadratic are 1
2a

(
−b±

√
b2 − 4ac

)
.

Thus, if 4ac < 0 and a > 0 then the upper root is positive and the lower root is negative. In
equation (11), a = 1, and 4ac < 0 if and only if equation (D.2) holds. Because the upper root
is positive, α < 0 must be the lower root, and point identification is achieved given knowledge
of Cov(∆ξ,∆η). QED.

Part (2). In order to prove the necessary and sufficient condition for point identification, we
first state and prove a lemma:

Lemma D.2. The roots of equation (11) are α and Cov(p∗,∆ξ)
V ar(p∗) − Cov(p∗,λ)

V ar(p∗) − Cov(∆ξ,∆η)
V ar(p∗) .

Proof of Lemma D.2. We first provide equation (11) for reference:

0 = α2

+

(
Cov(p∗, λ)

V ar(p∗)
+
Cov(∆ξ,∆η)

V ar(p∗)
− αOLS

)
α

+

(
−αOLSCov(p

∗, λ)

V ar(p∗)
−
Cov

(
∆ξOLS , λ

)
V ar(p∗)

)

To find the roots, begin by applying the quadratic formula

(r1, r2) =
1

2

(
−B ±

√
B2 − 4AC

)
=

1

2

(
αOLS −

Cov(p∗, λ)

V ar(p∗)
−

Cov(∆ξ,∆η)

V ar(p∗)

)
(D.3)

±
1

2

√(
αOLS +

Cov(p∗, λ)

V ar(p∗)

)2

+ 4
Cov (∆ξOLS , λ)

V ar(p∗)
+

(
Cov(∆ξ,∆η)

V ar(p∗)

)2

− 2
Cov(∆ξ,∆η)

V ar(p∗)

(
αOLS −

Cov(p∗, λ)

V ar(p∗)

)

Looking inside the radical, consider the first part:
(
αOLS + Cov(p∗,λ)

V ar(p∗)

)2
+ 4

Cov(∆ξOLS ,λ)
V ar(p∗)(

αOLS +
Cov(p∗, λ)

V ar(p∗)

)2

+ 4
Cov

(
∆ξOLS , λ

)
V ar(p∗)

=

(
αOLS +

Cov(p∗, λ)

V ar(p∗)

)2

+ 4
Cov

(
∆ξ − p∗(αOLS − α), λ

)
V ar(p∗)

=

(
αOLS +

Cov(p∗, λ)

V ar(p∗)

)2

+ 4
Cov (∆ξ, λ)

V ar(p∗)
− 4

Cov(p∗,∆ξ)

V ar(p∗)

Cov (p∗, λ)

V ar(p∗)

=

(
αOLS +

Cov(p∗, λ)

V ar(p∗)

)2

+ 4
Cov (∆ξ, λ)

V ar(p∗)
− 4

(
Cov(∆ξ,∆η)

V ar(p∗)
+

Cov(∆ξ,− 1
α
λ)

V ar(p∗)

)
Cov (p∗, λ)

V ar(p∗)

=

(
αOLS +

Cov(p∗, λ)

V ar(p∗)

)2

+ 4
Cov (∆ξ, λ)

V ar(p∗)

(
1 +

1

α

Cov (p∗, λ)

V ar(p∗)

)
− 4

Cov(∆ξ,∆η)

V ar(p∗)

Cov (p∗, λ)

V ar(p∗)
(D.4)

To simplify this expression, it is helpful to use the general decomposition of a firm’s first-
order condition, p = mc + µ, where mc is the marginal cost and µ is the markup. We can
write p = p∗ + p̂, where p̂ is the projection of p onto the exogenous demand variables, x̃. By
assumption, c = xγ + η. It follows that

p∗ = xγ + η + µ− p̂

= xγ + η − 1

α
λ− p̂
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Therefore
Cov(p∗,∆ξ) = Cov(∆ξ,∆η)− 1

α
Cov(∆ξ, λ)

and

Cov(∆ξ, λ) = −α (Cov(p∗,∆ξ)− Cov(∆ξ,∆η))

Cov(∆ξ, λ)

V ar(p∗)
= −α

(
Cov(p∗,∆ξ)

V ar(p∗)
− Cov(∆ξ,∆η)

V ar(p∗)

)
(D.5)

Returning to equation (D.4), we can substitute using equation (D.5) and simplify:(
αOLS +

Cov(p∗, λ)

V ar(p∗)

)2

+ 4
Cov (∆ξ, λ)

V ar(p∗)

(
1 +

1

α

Cov (p∗, λ)

V ar(p∗)

)
− 4

Cov(∆ξ,∆η)

V ar(p∗)

Cov (p∗, λ)

V ar(p∗)

=
(
αOLS

)2

+

(
Cov (p∗, λ)

V ar(p∗)

)2

+ 2αOLS Cov (p∗, λ)

V ar(p∗)
− 4

Cov(∆ξ,∆η)

V ar(p∗)

Cov (p∗, λ)

V ar(p∗)

+ 4
Cov (∆ξ, λ)

V ar(p∗)
+ 4

1

α

Cov (∆ξ, λ)

V ar(p∗)

Cov (p∗, λ)

V ar(p∗)

=

(
α+

Cov (p∗,∆ξ)

V ar(p∗)

)2

+

(
Cov (p∗, λ)

V ar(p∗)

)2

+ 2

(
α+

Cov (p∗,∆ξ)

V ar(p∗)

)
Cov (p∗, λ)

V ar(p∗)
− 4

Cov(∆ξ,∆η)

V ar(p∗)

Cov (p∗, λ)

V ar(p∗)

− 4α

(
Cov(p∗,∆ξ)

V ar(p∗)
− Cov(∆ξ,∆η)

V ar(p∗)

)
− 4

(
Cov(p∗,∆ξ)

V ar(p∗)
− Cov(∆ξ,∆η)

V ar(p∗)

)
Cov (p∗, λ)

V ar(p∗)

=

(
α+

Cov (p∗,∆ξ)

V ar(p∗)

)2

+

(
Cov (p∗, λ)

V ar(p∗)

)2

+ 2

(
α+

Cov (p∗,∆ξ)

V ar(p∗)

)
Cov (p∗, λ)

V ar(p∗)

− 4α

(
Cov(p∗,∆ξ)

V ar(p∗)

)
− 4

(
Cov(p∗,∆ξ)

V ar(p∗)

)
Cov (p∗, λ)

V ar(p∗)
+ 4α

Cov(∆ξ,∆η)

V ar(p∗)

=α2 +

(
Cov (p∗,∆ξ)

V ar(p∗)

)2

+

(
Cov (p∗, λ)

V ar(p∗)

)2

+ 2α
Cov (p∗, λ)

V ar(p∗)

− 2α
Cov (p∗,∆ξ)

V ar(p∗)
− 2

Cov (p∗,∆ξ)

V ar(p∗)

Cov (p∗, λ)

V ar(p∗)
+ 4α

Cov(∆ξ,∆η)

V ar(p∗)

=

((
α+

Cov (p∗, λ)

V ar(p∗)

)
− Cov (p∗,∆ξ)

V ar(p∗)

)2

+ 4α
Cov(∆ξ,∆η)

V ar(p∗)

Now, consider the second part inside of the radical in equation (D.3):
(
Cov(∆ξ,∆η)

V ar(p∗)

)2

− 2
Cov(∆ξ,∆η)

V ar(p∗)

(
αOLS −

Cov(p∗, λ)

V ar(p∗)

)
=

(
Cov(∆ξ,∆η)

V ar(p∗)

)2

− 2
Cov(∆ξ,∆η)

V ar(p∗)

(
α+

Cov(∆ξ,∆η)

V ar(p∗)
−

1

α

Cov(∆ξ, λ)

V ar(p∗)
−

Cov(p∗, λ)

V ar(p∗)

)
=

(
Cov(∆ξ,∆η)

V ar(p∗)

)2

− 2α
Cov(∆ξ,∆η)

V ar(p∗)
− 2

(
Cov(∆ξ,∆η)

V ar(p∗)

)2

+ 2
1

α

Cov(∆ξ,∆η)

V ar(p∗)

Cov(∆ξ, λ)

V ar(p∗)
+ 2

Cov(∆ξ,∆η)

V ar(p∗)

Cov(p∗, λ)

V ar(p∗)

=−
(
Cov(∆ξ,∆η)

V ar(p∗)

)2

− 2α
Cov(∆ξ,∆η)

V ar(p∗)
− 2

Cov(∆ξ,∆η)

V ar(p∗)

(
Cov(p∗,∆ξ)

V ar(p∗)
−

Cov(∆ξ,∆η)

V ar(p∗)

)
+ 2

Cov(∆ξ,∆η)

V ar(p∗)

Cov(p∗, λ)

V ar(p∗)

=

(
Cov(∆ξ,∆η)

V ar(p∗)

)2

− 2
Cov(∆ξ,∆η)

V ar(p∗)
α− 2

Cov(∆ξ,∆η)

V ar(p∗)

Cov(p∗,∆ξ)

V ar(p∗)
+ 2

Cov(∆ξ,∆η)

V ar(p∗)

Cov(p∗, λ)

V ar(p∗)
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Combining yields a simpler expression for the terms inside the radical of equation (D.3):((
α+

Cov (p∗, λ)

V ar(p∗)

)
− Cov (p∗,∆ξ)

V ar(p∗)

)2

+ 4α
Cov(∆ξ,∆η)

V ar(p∗)

+

(
Cov(∆ξ,∆η)

V ar(p∗)

)2

− 2
Cov(∆ξ,∆η)

V ar(p∗)
α− 2

Cov(∆ξ,∆η)

V ar(p∗)

Cov(p∗,∆ξ)

V ar(p∗)
+ 2

Cov(∆ξ,∆η)

V ar(p∗)

Cov(p∗, λ)

V ar(p∗)

=

((
α+

Cov (p∗, λ)

V ar(p∗)

)
− Cov (p∗,∆ξ)

V ar(p∗)

)2

+

(
Cov(∆ξ,∆η)

V ar(p∗)

)2

+ 2α
Cov(∆ξ,∆η)

V ar(p∗)
− 2

Cov(∆ξ,∆η)

V ar(p∗)

Cov(p∗,∆ξ)

V ar(p∗)
+ 2

Cov(∆ξ,∆η)

V ar(p∗)

Cov(p∗, λ)

V ar(p∗)

=

(
α+

Cov (p∗, λ)

V ar(p∗)
− Cov (p∗,∆ξ)

V ar(p∗)
+

Cov(∆ξ,∆η)

V ar(p∗)

)2

Plugging this back into equation (D.3), we have:

(r1, r2) =
1

2

(
αOLS − Cov(p∗, λ)

V ar(p∗)
− Cov(∆ξ,∆η)

V ar(p∗)

±

√(
α+

Cov (p∗, λ)

V ar(p∗)
− Cov (p∗,∆ξ)

V ar(p∗)
+
Cov(∆ξ,∆η)

V ar(p∗)

)2


=
1

2

(
α+

Cov (p∗,∆ξ)

V ar(p∗)
− Cov(p∗, λ)

V ar(p∗)
− Cov(∆ξ,∆η)

V ar(p∗)

±

√(
α+

Cov (p∗, λ)

V ar(p∗)
− Cov (p∗,∆ξ)

V ar(p∗)
+
Cov(∆ξ,∆η)

V ar(p∗)

)2


The roots are given by

1

2

(
α+

Cov (p∗,∆ξ)

V ar(p∗)
− Cov(p∗, λ)

V ar(p∗)
− Cov(∆ξ,∆η)

V ar(p∗)

)
+

1

2

(
α+

Cov (p∗, λ)

V ar(p∗)
− Cov (p∗,∆ξ)

V ar(p∗)
+
Cov(∆ξ,∆η)

V ar(p∗)

)
= α

and

1

2

(
α+

Cov (p∗,∆ξ)

V ar(p∗)
− Cov(p∗, λ)

V ar(p∗)
− Cov(∆ξ,∆η)

V ar(p∗)

)
+

1

2

(
−α− Cov (p∗, λ)

V ar(p∗)
+
Cov (p∗,∆ξ)

V ar(p∗)
− Cov(∆ξ,∆η)

V ar(p∗)

)
=
Cov (p∗,∆ξ)

V ar(p∗)
− Cov(p∗, λ)

V ar(p∗)
− Cov(∆ξ,∆η)

V ar(p∗)

which completes the proof of the intermediate result. QED.

Part (3). Consider the roots of equation (11), α and Cov(p∗,∆ξ)
V ar(p∗) − Cov(p∗,λ)

V ar(p∗) − Cov(∆ξ,∆η)
V ar(p∗) . The
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price parameter α may or may not be the lower root.39 However, α is the lower root iff

α <
Cov(p∗,∆ξ)

V ar(p∗)
− Cov(p∗, λ)

V ar(p∗)
− Cov(∆ξ,∆η)

V ar(p∗)

α < −α
Cov(p∗,− 1

α∆ξ)

V ar(p∗)
+ α

Cov(p∗,− 1
αλ)

V ar(p∗)
− Cov(∆ξ,∆η)

V ar(p∗)

α < −α
Cov(p∗,− 1

α∆ξ)

V ar(p∗)
+ α

Cov(p∗, p∗ − c)

V ar(p∗)
− Cov(∆ξ,∆η)

V ar(p∗)

α < α
V ar(p∗)

V ar(p∗)
− α

Cov(p∗,− 1
α∆ξ)

V ar(p∗)
− α

Cov(p∗,∆η)

V ar(p∗)
− Cov(∆ξ,∆η)

V ar(p∗)

0 < −α
Cov(p∗,− 1

α∆ξ)

V ar(p∗)
− α

Cov(p∗,∆η)

V ar(p∗)
− Cov(∆ξ,∆η)

V ar(p∗)

0 <
Cov(p∗,− 1

α∆ξ)

V ar(p∗)
+
Cov(p∗,∆η)

V ar(p∗)
+

1

α

Cov(∆ξ,∆η)

V ar(p∗)

The third line relies on the expression for the markup, p−c = − 1
αλ. The final line holds because

α < 0 so −α > 0. It follows that α is the lower root of equation (11) iff

− 1

α

Cov(∆ξ,∆η)

V ar(p∗)
≤
Cov

(
p∗,− 1

α∆ξ
)

V ar(p∗)
+
Cov (p∗,∆η)

V ar(p∗)

in which case α is point identified given knowledge of Cov(∆ξ,∆η). QED.

D.4 Proof of Proposition 3 (Approximation)

The demand and supply equations are given by:

h =αp+ xβ + ξ

p =xγ − 1

α

dh

dq
q + η

where dh
dq q = λ for single-product firms. For ease of exposition, here we slightly abuse notation

and assume that ξ and η are exogenous (and x includes dummy variables to absorb fixed
39Consider that the first root is the upper root if

α+
Cov (p∗, λ)

V ar(p∗)
− Cov (p∗,∆ξ)

V ar(p∗)
+

Cov(∆ξ,∆η)

V ar(p∗)
> 0

because, in that case,√(
α+

Cov (p∗, λ)

V ar(p∗)
− Cov (p∗,∆ξ)

V ar(p∗)
+

Cov(∆ξ,∆η)

V ar(p∗)

)2

= α+
Cov (p∗, λ)

V ar(p∗)
− Cov (p∗,∆ξ)

V ar(p∗)
+

Cov(∆ξ,∆η)

V ar(p∗)

When α +
Cov(p∗,λ)
V ar(p∗) − Cov(p∗,∆ξ)

V ar(p∗) + Cov(∆ξ,∆η)
V ar(p∗) < 0, then

√(
α+ Cov(p∗,λ)

V ar(p∗) − Cov(p∗,∆ξ)
V ar(p∗) + Cov(∆ξ,∆η)

V ar(p∗)

)2

=

−
(
α+

Cov(p∗,λ)
V ar(p∗) − Cov(p∗,∆ξ)

V ar(p∗) + Cov(∆ξ,∆η)
V ar(p∗)

)
, and the first root is then the lower root (i.e., minus the negative

value).
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effects). Using an first-order expansion of h about q, h ≈ h + dh
dq (q − q), we can solve for a

reduced-form for p and h. It follows that

h+
dh

dq
(q − q) ≈αp+ xβ + ξ

dh

dq
q ≈αp+ xβ + ξ − h+

dh

dq
q

Letting dh
dq q =

d̃h
dq q +

dh
dq q, we have

p ≈ xγ − 1

α

d̃h

dq
q − 1

α

(
αp+ xβ + ξ − h+

dh

dq
q

)
+ η

2p ≈ xγ +
1

α
xβ − 1

α
h+

1

α

dh

dq
q − 1

α

d̃h

dq
q + η +

1

α
ξ

p ≈ 1

2

(
xγ +

1

α
xβ − 1

α
h+

1

α

dh

dq
q − 1

α

d̃h

dq
q + η +

1

α
ξ

)
.

Let H∗ denote the residual from a regression of d̃h
dq q on x. Then p∗, the residual from a

regression of p on x, is

p∗ ≈ 1

2

(
η +

1

α
ξ − 1

α
H∗
)
. (D.6)

Likewise, as h− h+ dh
dq q ≈

dh
dq q,

p ≈ xγ − 1

α

d̃h

dq
q − 1

α

dh

dq
q + η

h ≈α

(
xγ − 1

α

d̃h

dq
q − 1

α

dh

dq
q + η

)
+ xβ + ξ

h ≈αxγ + xβ − d̃h

dq
q −

(
h− h+

dh

dq
q

)
+ αη + ξ

2h ≈αxγ + xβ − d̃h

dq
q + h− dh

dq
q + αη + ξ.

Similarly, the residual from a regression of h on x is:

h∗ ≈ 1

2
(αη + ξ −H∗) . (D.7)
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Equations (D.6) and (D.7) provide an approximation for α.

−

√
V ar(h∗)

V ar(p∗)
≈ −

√
1
4V ar (αη + ξ −H∗)

1
4V ar

(
η + 1

αξ −
1
αH

∗
)

≈ −

√
α2V ar

(
η + 1

αξ −
1
αH

∗
)

V ar
(
η + 1

αξ −
1
αH

∗
)

≈ α

QED.

D.5 Proof of Lemma 1 (Monotonicity in Cov(∆ξ,∆η))

We return to the quadratic formula for the proof. The lower root of a quadratic ax2 + bx+ c is
L ≡ 1

2

(
−b−

√
b2 − 4ac

)
. In our case, a = 1.

We wish to show that ∂L
∂γ < 0, where γ = Cov(∆ξ,∆η). We evaluate the derivative to obtain

∂L

∂γ
= −1

2

(
1 +

b

(b2 − 4c)
1
2

)
∂b

∂γ
.

We observe that, in our setting, ∂b
∂γ = 1

V ar(p∗) is always positive. Therefore, it suffices to
show that

1 +
b

(b2 − 4c)
1
2

> 0. (D.8)

We have two cases. First, when c < 0, we know that
∣∣∣∣ b

(b2−4c)
1
2

∣∣∣∣ < 1, which satisfies equa-

tion (D.8). Second, when c > 0, it must be the case that b > 0 also. Otherwise, both roots
are positive, invalidating the model. When b > 0, it is evident that the left-hand side of equa-
tion (D.8) is positive. This demonstrates monotonicity.

Finally, we obtain the range of values for L by examining the limits as γ → ∞ and γ → −∞.
From the expression for L and the result that ∂b

∂γ is a constant, we obtain

lim
γ→−∞

L = 0

lim
γ→∞

L = −∞

When c < 0, the domain of the quadratic function is (−∞,∞), which, along with monotonicity,
implies the range for L of (0,−∞). When c > 0, the domain is not defined on the interval
(−2

√
c, 2

√
c), but L is equal in value at the boundaries of the domain. QED.

Additionally, we note that the upper root, U ≡ 1
2

(
−b+

√
b2 − 4ac

)
is increasing in γ. When

the upper root is a valid solution (i.e., negative), it must be the case that c > 0 and b > 0, and
it is straightforward to follow the above arguments to show that ∂U

∂γ > 0 and that the range of
the upper root is [−1

2b, 0).
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D.6 Proof of Proposition 4 (Covariance Bound)

The proof involves an application of the quadratic formula. Any generic quadratic, ax2 + bx+

c, with roots 1
2

(
−b±

√
b2 − 4ac

)
, admits a real solution if and only if b2 ≥ 4ac. Given the

formulation of equation (11), real solutions satisfy the condition:(
Cov(p∗, λ)

V ar(p∗)
+
Cov(∆ξ,∆η)

V ar(p∗)
− αOLS

)2

≥ 4

(
−αOLSCov(p

∗, λ)

V ar(p∗)
−
Cov

(
∆ξOLS , λ

)
V ar(p∗)

)
.

As a = 1, a solution is always possible if c < 0. This is the sufficient condition for point
identification from the text. If c ≥ 0, it must be the case that b ≥ 0; otherwise, both roots are
positive. Therefore, a real solution is obtained if and only if b ≥ 2

√
c, that is

(
Cov(p∗, λ)

V ar(p∗)
+
Cov(∆ξ,∆η)

V ar(p∗)
− αOLS

)
≥ 2

√
−αOLS

Cov(p∗, λ)

V ar(p∗)
− Cov (∆ξOLS , λ)

V ar(p∗)
.

Solving for Cov(∆ξ,∆η), we obtain the model-based bound,

Cov(∆ξ,∆η) ≥ V ar(p∗)αOLS − Cov(p∗, λ) + 2V ar(p∗)

√
−αOLS

Cov(p∗, λ)

V ar(p∗)
− Cov (∆ξOLS , λ)

V ar(p∗)
.

This bound exists if the expression inside the radical is positive, which is the case if and only if
the sufficient condition for point identification from Proposition 2 fails. QED.

D.7 Proof of Corollary 1 (Marginal Cost Functions)

Under the semi-linear marginal cost schedule of equation (26) and the assumption thatCov(∆ξ,∆η) =
0, the plim of the OLS estimator is equal to

plim α̂OLS = α+
Cov(∆ξ, g)

V ar(p∗)
− 1

α

Cov (∆ξ, λ)

V ar(p∗)
.

This is obtain directly by plugging in the first–order condition for p: Cov(p∗,∆ξ) = Cov(g(q; τ)+
η − 1

αλ− p̂,∆ξ) = Cov(∆ξ, g)− 1
αCov(∆ξ, λ) under the assumptions. Next, we re-express the

terms including the unobserved demand shocks in in terms of OLS residuals. As shown by
Lemma D.1, the estimated residuals are given by ∆ξOLS = ∆ξ+

(
α− αOLS

)
p∗. As α−αOLS =

1
α
Cov(∆ξ,λ)
V ar(p∗) − Cov(∆ξ,g)

V ar(p∗) , we obtain ∆ξOLS = ∆ξ +
(

1
α
Cov(∆ξ,λ)
V ar(p∗) − Cov(∆ξ,g)

V ar(p∗)

)
p∗. This implies

Cov
(
∆ξOLS , λ

)
=

(
1 +

1

α

Cov(p∗, λ)

V ar(p∗)

)
Cov(∆ξ, λ)− Cov(p∗, λ)

V ar(p∗)
Cov(∆ξ, g)

Cov
(
∆ξOLS , g(q; τ)

)
=

1

α

Cov(p∗, g)

V ar(p∗)
Cov (∆ξ, λ) +

(
1− Cov(p∗, g)

V ar(p∗)

)
Cov(∆ξ, g)
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We write the system of equations in matrix form and invert to solve for the covariance terms
that include the unobserved demand shock:[

Cov(∆ξ, λ)
Cov(∆ξ, g)

]
=

[
1 + 1

α
Cov(p∗,λ)
V ar(p∗) −Cov(p∗,λ)

V ar(p∗)
1
α
Cov(p∗,g)
V ar(p∗) 1− Cov(p∗,g)

V ar(p∗)

]−1 [
Cov(∆ξOLS , λ)
Cov(∆ξOLS , g)

]
where [

1 + 1
α
Cov(p∗,λ)
V ar(p∗) −Cov(p∗,λ)

V ar(p∗)
1
α
Cov(p∗,g)
V ar(p∗) 1− Cov(p∗,g)

V ar(p∗)

]−1

=

1

1 + 1
α
Cov(p∗,λ)
V ar(p∗) − Cov(p∗,g)

V ar(p∗)

[
1− Cov(p∗,g)

V ar(p∗)
Cov(p∗,λ)
V ar(p∗)

− 1
α
Cov(p∗,g)
V ar(p∗) 1 + 1

α
Cov(p∗,λ)
V ar(p∗)

]
.

Therefore, we obtain the relations

Cov(∆ξ, λ) =

(
1− Cov(p∗,g)

V ar(p∗)

)
Cov(∆ξOLS , λ) + Cov(p∗,λ)

V ar(p∗) Cov(∆ξ
OLS , g)

1 + 1
α
Cov(p∗,λ)
V ar(p∗) − Cov(p∗,g)

V ar(p∗)

Cov(∆ξ, g) =
− 1

α
Cov(p∗,g)
V ar(p∗) Cov(∆ξ

OLS , λ) +
(
1 + 1

α
Cov(p∗,λ)
V ar(p∗)

)
Cov(∆ξOLS , g)

1 + 1
α
Cov(p∗,λ)
V ar(p∗) − Cov(p∗,g)

V ar(p∗)

.

In terms of observables, we can substitute in for Cov(∆ξ, g) − 1
αCov (∆ξ, λ) in the plim of the

OLS estimator and simplify:(
1 +

1

α

Cov(p∗, λ)

V ar(p∗)
− Cov(p∗, g)

V ar(p∗)

)(
Cov(∆ξ, g)− 1

α
Cov (∆ξ, λ)

)
=− 1

α

Cov(p∗, g)

V ar(p∗)
Cov(∆ξOLS , λ) +

(
1 +

1

α

Cov(p∗, λ)

V ar(p∗)

)
Cov(∆ξOLS , g)

− 1

α

(
1− Cov(p∗, g)

V ar(p∗)

)
Cov(∆ξOLS , λ)− 1

α

Cov(p∗, λ)

V ar(p∗)
Cov(∆ξOLS , g)

=Cov(∆ξOLS , g)− 1

α
Cov(∆ξOLS , λ).

Thus, we obtain an expression for the probability limit of the OLS estimator,

plimα̂OLS = α−
Cov(∆ξOLS ,λ)

V ar(p∗) − αCov(∆ξOLS ,g)
V ar(p∗)

α+ Cov(p∗,λ)
V ar(p∗) − αCov(p∗,g)

V ar(p∗)

,
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and the following quadratic α.

0 =

(
1− Cov(p∗, g)

V ar(p∗)

)
α2

+

(
Cov(p∗, λ)

V ar(p∗)
− α̂OLS +

Cov(p∗, g)

V ar(p∗)
α̂OLS +

Cov(∆ξOLS , g)

V ar(p∗)

)
α

+

(
−Cov(p

∗, λ)

V ar(p∗)
α̂OLS − Cov(∆ξOLS , λ)

V ar(p∗)

)
.

QED.
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